Czasopismo
2015
|
Vol. 136, nr 3
|
269--284
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
P systems have been proven to be useful as modeling tools in many fields, such as Systems Biology and Ecological Modeling. For such applications, the acceleration of P system simulation is often desired, given the computational needs derived from these kinds of models. One promising solution is to implement the inherent parallelism of P systems on platforms with parallel architectures. In this respect, GPU computing proved to be an alternative to more classic approaches in Parallel Computing. It provides a low cost, and a manycore platform with a high level of parallelism. The GPU has been already employed to speedup the simulation of P systems. In this paper, we look over the available parallel P systems simulators on the GPU, with special emphasis on those included in the PMCGPU project, and analyze some useful guidelines for future implementations and developments.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
269--284
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Research Group on Natural Computing Universidad de Sevilla, Seville, Spain, mdelamor@us.es
autor
- University of Minnesota Minneapolis-St. Paul, United States, mgarciaquismondo@us.es
autor
- Research Group on Natural Computing Universidad de Sevilla, Seville, Spain, lfmaciasr@us.es
autor
- Research Group on Natural Computing Universidad de Sevilla, Seville, Spain, lvalencia@us.es
autor
- Research Group on Natural Computing Universidad de Sevilla, Seville, Spain, ariscosn@us.es
autor
- Research Group on Natural Computing Universidad de Sevilla, Seville, Spain, marperg@us.es
Bibliografia
- [1] Cabarle, F.G., Adorna, H.N., Martínez-del-Amor, M.A.: A spiking neural P system simulator based on CUDA. Proc. 12th Conference Membrane Computing, LNCS 7184, Springer-Verlag, Berlin, 2012, 87–103.
- [2] Cabarle, F.G., Adorna, H.N., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J.: Improving GPU simulations of spiking neural P systems, Romanian Journal of Information Science and Technology, 15 (1), 2012, 5–20.
- [3] Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with Active Membranes on CUDA, Briefings in Bioinformatics, 11 (3), 2010, 313–322.
- [4] Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution to SAT by using GPUs, Journal of Logic and Algebraic Programming, 79 (6), 2010, 317–325.
- [5] Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J., Ujaldón, M.: The GPU on the simulation of cellular computing models, Soft Computing, 16 (2), 2012, 231–246.
- [6] Díaz-Pernil, D., Berciano, A., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Segmenting images with gradient-based edge detection using Membrane Computing, Pattern Recognition Letters, 34 (8), 2013, 846–855.
- [7] Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems and Synthetic Biology, Series: Emergence, Complexity and Computation, vol. 7, Springer-Verlag, Berlin, 2014.
- [8] Ipate, F., Lefticaru, R., Mierlă, L., Valencia-Cabrera, L., Han, H., Zhang, G., Dragomir, C., Pérez-Jiménez, M.J., Gheorghe, M.: Kernel P systems: Applications and implementations, Proc. 8th Int. Conf. on Bio-Inspired Computing: Theories and Applications, Advances in Intelligent Systems and Computing, Vol. 2012, 2013, pp. 1081-1089.
- [9] García-Quismondo, M.: Modelling and simulation of real-life phenomena in Membrane Computing, Ph.D. thesis, University of Seville, January 2014.
- [10] García-Quismondo, M., Macías-Ramos, L.F., Pérez-Jiménez, M.J.: Implementing enzymatic numerical P systems for AI applications by means of graphic processing units. Beyond Artificial Intelligence, Topics in Intelligent Engineering and Informatics, Vol. 4, 2013, pp. 137–159.
- [11] García-Quismondo, M., Pavel, A.B., Pérez-Jiménez M.J.: Simulating Large-Scale ENPS Models by Means of GPU, Proc. Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain, volume I, 2012, pp. 137–152.
- [12] Gutiérrez, A., Alonso, S.: P systems: from theory to implementation, in: Sequence and Genome Analysis: Methods and Applications (Z. Zhao, Ed.), CreateSpace Ind. Pub. Plat., Chapter 12, 2010, pp. 205–226.
- [13] Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-N´uñez, A.: Available Membrane Computing software. In G. Ciobanu, Gh. Păun, M.J. P’erez-Jiménez (eds.) Applications of Membrane Computing, Natural Computing Series, Springer-Verlag, Chapter 15, 2006, pp. 411–436.
- [14] Harris, M.: Mapping computational concepts to GPUs, ACM SIGGRAPH 2005 Courses, NY. USA, 2005.
- [15] Juayong, R.A., Cabarle, F.G., Adorna, H.N., Martínez-del-Amor, M.A.: On the simulations of evolution communication P systems with energy without antiport rules for GPUs, Proc. Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain, volume I, 2012, pp. 267–290.
- [16] Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands On Approach, Morgan Kaufmann, 2010.
- [17] Liu, B., Zydek, D., Selvaraj, H., Gewali, L.: Accelerating High Performance Computing applications: Using CPUs, GPUs, hybrid CPU/GPU, and FPGAs, Proc. 13th Int. Conf. on Parallel and Distributed Computing, Applications and Technologies, 2012, pp. 337–342.
- [18] Maroosi, A., Muniyandi, R.C., Sundararajan, E.A., Zin, A.M.: Parallel and distributed computing models on a graphics processing unit to accelerate simulation of membrane systems, Simulation Modelling Practice and Theory, 47, 2014, 60-78.
- [19] Martínez-del-Amor, M.A.: Accelerating Membrane Systems Simulators using High Performance Computing with GPU, Ph.D. thesis, University of Seville, May 2013.
- [20] Martínez-del-Amor, M.A., Karlin, I., Jensen, R.E., Pérez-Jiménez, M.J., Elster, A.C.: Parallel simulation of probabilistic P systems on multicore platforms, Proc. Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain, volume II, 2012, pp. 17–26.
- [21] Martínez-del-Amor, M.A., Pérez-Carrasco, J., Pérez-Jiménez, M.J.: Characterizing the parallel simulation of P systems on the GPU, International Journal of Unconventional Computing, 9 (5-6), 2013, 405-424.
- [22] Martínez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C., Pérez-Jiménez, M.J.: Population Dynamics P systems on CUDA, 10th Conference on Computational Methods in Systems Biology, CMSB2012, LNBI 7605, 2012, 247-266.
- [23] Martínez-del-Amor, M.A., Pérez-Hurtado, I., García-Quismondo, M., Macías-Ramos, L.F., Valencia-Cabrera, L., Romero-Jiménez, A´ , Graciani-Díaz, C., Riscos-Núnñz, A., Colomer, M.A., Pérez-Jiménez, M.J.: DCBA: Simulating population dynamics P systems with proportional object distribution, Proc. 13th Conference Membrane Computing, LNCS 7762, 2013, 257-276.
- [24] Nguyen, V., Kearney, D., Gioiosa, G.: Balancing performance, flexibility, and scalability in a parallel computing platform for Membrane Computing applications, Proc. 9thWorkshop on Membrane computing, LNCS 4860, 2007, 385–413.
- [25] Orellana-Martín, D., Graciani, C., Macías-Ramos, L.F., Martínez-del-Amor, M.A., Riscos- Núñez, A., Romero-Jiménez, A., Valencia-Cabrera, L.: Sevilla carpets revisited: Enriching the Membrane Computing toolbox. Fundamenta Informaticae, 134, 2014, 153–166.
- [26] Păun, Gh.: Computing with Membranes. Journal of Computer and System Sciences, 61 (1), 2000, 108–143, and Turku Center for CS-TUCS Report, No. 208, 1998
- [27] Păun, Gh., Rozenberg, G., Salomaa, A. (eds.). The Oxford Handbook of Membrane Computing, Oxford University Press, USA, 2010.
- [28] Peña-Cantillana, F., Díaz-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.: Implementation on CUDA of the smoothing problem with tissue-like P systems, International Journal on Natural Computing Research, 2 (3), 2011, 25–34.
- [29] Zeng, X., Adorna, H.N., Martínez-del-Amor, M.A., Pan, L., Pérez-Jiménez, M.J.: Matrix representation of spiking neural P systems. 11th Workshop on Membrane Computing, LNCS 6501, 2011, 377–391.
- [30] NVIDIA CUDA website, 2014. https://developer.nvidia.com/cuda-zone
- [31] The PMCGPU project, 2013. http://sourceforge.net/p/pmcgpu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c6f65619-658b-4791-b31c-0116ef5562af