Warianty tytułu
Pasmowy wzorzec napięcia wykorzystujący układ DVBCC
Języki publikacji
Abstrakty
This paper proposes a new approach of bandgap voltage reference (BGR) circuit design by using CMOS differential voltage current conveyor (DVCC). The proposed circuit employs single DVCC, which is able to reduce the number of devices used to bandgap core and start-up circuits. The simulation results indicate reference voltage of about 500mV, temperature coefficient (TC) of 20ppm/°C, which can be successfully operated with a minimum supply voltage of 1.2V in a temperature range of 0-100°C and a total power dissipation of 56.6 W at room temperature.
Opisano pasmowy wzorzec napięcia NBGR zaprojektowany w technologii CMOS z wykorzystaniem układu DVCC (differentia voltage current conveyor).Zaprojektowany wzorzec umożliwia uzyskanie napięcia ok. 500 mV ze współczynnikiem temperaturowym 20 ppm/oC przy minimalnym napięciu zasilającym 1.2 V przy poborze mocy 56 uV.
Czasopismo
Rocznik
Tom
Strony
80-83
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Department of Computer Engineering, Faculty of Engineering, Rajamangala University of Technology Isan Khon Kaen campus, Mueang Khon Kaen District, Khon Kaen 40000 Thailand, saweth12@gmail.com
Bibliografia
- [1] Kuijk K.E., A precision reference voltage source, IEEE J. Solid-State Circuits, June 1973, vol. SC-8, 222–226
- [2] Banba H., Shiga H., Umezawa S., Miyaba T., etc. A CMOS Band gap Reference Circuit with Sub-1V Operation, IEEE J. Solid-State Circuit, 1999, vol. 34, 670-674
- [3] Waltari M., Halonen K., Reference voltage driver for lowvoltage CMOS A/D converters, The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000, vol. 1, 28-31
- [4] Malcovati P., Maloberti F., Pruzzi M. and Fiocchi C., Curvature Compensated BiCMOS Bandgap with 1 V Supply Voltage, IEEE Journal of Solid-State Circuits, 2000, vol. 36, 1076–1081
- [5] Leung K.N., Mok P.K.T., Leung C.Y., A 2-V 23-μA 5.3- ppm/°C curvature-compensated CMOS bandgap voltage reference, IEEE Journal of Solid-State Circuits, 2003, vol. 38, 561-564
- [6] Jinggang S., Zhiliang C., Bingxue S., A 1V supply area effective CMOS Bandgap reference, 5th International Conference on ASIC, 2003, vol. 1, 619-622
- [7] Boni A., Op-amps and startup circuits for CMOS bandgap references with near 1-V supply, IEEE J. of Solid-State Circuits, 2002, vol. 37, no. 10, 1339-1343
- [8] Maneewan, S., Udorn, N., Duangmalai, D., Silapan, P., Jaikla, W, A voltage-mode first order allpass filter based on VDTA, Advances in Electrical and Electronic Engineering, Volume 12, Issue 1, 2014, Pages 40-46.
- [9] Summart, S., Thongsopa, C., Jaikla, W., CCCIIs-based sinusoidal quadrature oscillators with non-interactive control of condition and frequency, Indian Journal of Pure and Applied Physics, Volume 52, Issue 4, April 2014, Pages 277-283
- [10] Mekhum, W., Jaikla, W., Three input single output voltagemode multifunction filter with independent control of pole frequency and quality factor, Advances in Electrical and Electronic Engineering, Volume 11, Issue 6, 2013, Pages 494-500.
- [11] Sotner, R. , Jerabek, J., Jaikla, W., Herencsar, N., Vrba, K., Dostal, T., Novel Oscillator Based on Voltage and Current- Gain Adjusting Used for Control of Oscillation Frequency and Oscillation Condition, Elektronika ir Elektrotechnika, Volume 19, Issue 6, 2013, Pages 75-80.
- [12] Ming-Dou K., Jung-Sheng C., Ching-Yum C., New curvaturecompensation technique for CMOS bandgap reference with sub-1-V operation, IEEE International Symposium on Circuits and Systems, 2005, vol. 4, 3861-3864
- [13] Yang W., Wang X., Cai J., A Sub-1-V Linear CMOS Bandgap Voltage Reference, Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2005, 1-4
- [14] Urban T., Subrt O., Martinek P., Analysis and Design Procedure of LVLP Sub-bandgap Reference - Development and Results, Radioengineering, 2011, vol. 20, no. 1, 239-244
- [15] Hongprasit S., Sa-Ngiamvibool, W., Apinan A. Design of Bandgap Core and Startup Circuits for All CMOS Bandgap Voltage Reference, PRZEGLAD ELEKTROTECHNICZNY 2012, vol. R. 88 NR 4a, 277-280
- [16] Kumngern M., New Chopper Modulators Using Differential Voltage Current Conveyor. Radioengineering, 2011, vol. 20, no. 2, 423-427
- [17] Biolek D., Senani R., Biolkova V., Kolka Z., Active Elements for Analog Signal Processing: Classification, Review, and New Proposals. Radioengineering, 2008, vol. 17, no. 4, 15-32
- [18] Kumar K., Pal K., Gupta G.K., Realization of muti-function biquad filter using operational transconductance amplifier, Indian Journal of Pure & Applied Physics, 2006, vol. 44, 71-74
- [19] Jaikla W., Siripongdee S., Suwanjan P., MISO Current-mode Biquad Filter with Independent Control of Pole Frequency and Quality Factor, Radioengineering, 2012, vol. 21, no. 3, 886-891
- [20] Wang H., YE Q., 0.5-V operational transconductance amplifier for CMOS bandgap reference application, 8th International Conference on Solid-State and Integrated Circuit Technology, 2006, 1705-1707
- [21] Ytterdal T., CMOS Bandgap voltage reference circuit for supply voltages down to 0.6 V, IEEE Electronics Letters, 2003, vol. 39(20), 1427-1428
- [22] Chunhua W., Yang L., Qiujing Z., YU F., Systematic Design of Fully Balanced Differential Current-Mode Multiple-Loop Feedback Filters Using CFBCCII, Radioengineering, 2010, vol. 19, no. 1, 185-193
- [23] Dostal T., Current-Mode Circuits Based on SIMO OTA: Review and New Applications in Filters, Contemporary Engineering Sciences, 2009, vol. 2, no. 10, 479-496
- [24] Khan Q.A., Dutta D. A programmable CMOS bandgap voltage reference circuit using current conveyor, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003, vol. 1, 8 – 11
- [25] Mahmoud S.A., Low Voltage Wide Range CMOS Differential Voltage Current Conveyor and its Applications, Contemporary Engineering Sciences, 2008, vol. 1, no. 3, 105-126
- [26] Hassan T.M., Mahmoud S.A., New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters, Int. J. Electron. Commun, 2010, vol. 64, 47–55
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c6de9df2-f991-4cfb-91c8-518dd4c11be7