Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 36, No. 4 | 722--732
Tytuł artykułu

Structural, optical and vibrational study of zinc copper ferrite nanocomposite prepared by exploding wire technique

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have synthesized zinc-copper ferrite (ZCFO) employing exploding wire technique (EWT). The X-ray diffraction (XRD) data confirm the formation of single phase spinel ZCFO, which is in good agreement with Fourier transform infrared spectroscopy (FT-IR), UV-Vis, and Raman spectroscopic analyses. It is also clearly seen in the SEM micrographs that the grains in ZCFO ferrite are very rough, which allows adsorption of gas like oxygen and therefore, the material can behave as active sensing surface. The size range of the grains in prepared sample is of 200 nm to 500 nm. The FT-IR spectrum of the nanocomposite consists of two broad bands, one at 580.4 cm−1 due to M–O stretching mode at the tetrahedral site and the other at 400.7 cm−1 due to M–O stretching mode at the octahedral site. The nanoparticles show a UV-Vis absorption band in the wavelength region of 400 nm to 700 nm. The energy band gap for the prepared nanomaterial was estimated to be 3.16 eV. Thus, the ferrite nanocomposite prepared by EWT is optically active. According to present literature, Raman spectroscopy study on zinc-copper ferrite system has not been reported till date. By suitable attributing various Raman modes, we have further confirmed the formation of ZCFO nanophase through the present novel approach.
Słowa kluczowe
Wydawca

Rocznik
Strony
722--732
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
autor
  • Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307, India
autor
  • Department of Physics, Manav Rachna University, Sector-43, Aravalli Hills, Delhi Surajkund Road, Faridabad-121004, India
  • Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307, India
autor
  • Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307, India, navendugoswami@gmail.com
Bibliografia
  • [1] Thakur P., Sharma R., Kumar M., Katyal S.C., Negi N.S., Thakur N., Mater. Res. Express, 3 (2016), 75001.
  • [2] Lopez J., Gonzalez-Bahamon L.F., Prado J., Caicedo J.C., Zambrano G., Gomez M.E., Esteve J., Prieto P., J. Magn. Magn. Mater., 324 (2012), 394.
  • [3] Ghasemi A., Hossienpour A., Morisako A., Saatchi A., Salehi M., J. Magn. Magn. Mater., 302 (2006), 429.
  • [4] Komarneni S., Fregeau E., Breval E., Roy R., J. Am. Ceram. Soc., 71 (1988), C26.
  • [5] Hrianka I., Malaescu I., J. Magn. Magn. Mater., 150 (1995), 131.
  • [6] Wang C., Zhang X.M., Qian X.F., Xie J., Wang W.Z., Qian Y.T., Mater. Res. Bull., 33 (1998), 1747.
  • [7] Yamamoto Y., Makino A., J. Magn. Magn. Mater., 133 (1994), 500.
  • [8] Kodama R.H., Berkowitz A.E., Mcniff Jr. E.J., Foner S., Phys. Rev. Lett., 77 (1996), 394.
  • [9] Banerjee M., Verma N., Rasad R., J. Mater. Sci., 42 (2007), 1833.
  • [10] Jain A., Baranwal R.K., Bharti A., Vakil Z., Prajapati C.S., Sci. World J., 2013 (2013), 790359.
  • [11] Jaswal L., Singh B., J. Integr. Sci. Technol., 2(2) (2014), 67.
  • [12] Goswami N., Singh S., Katyal S.C., J. Laser. Opt. Photonics, 4 (2017) 158.
  • [13] Abdeen A.M., J. Magn. Magn. Mater., 185 (1998), 199.
  • [14] Gubbala S., Nathania H., Koizolb K., Misra R.D.K., Physica B, 348 (2004), 317.
  • [15] Daliya S.M., Ruey-Shin J., Chem. Eng. J., 129 (2007), 51.
  • [16] Toledo J.A., Valenzuela A., Bosch P., Amendariz H., Montoya A., Nova N., Vazquez A., Appl. Catal. A-Gen., 198 (2000), 235.
  • [17] Radheshyam A., Dwivedi R., Reddy V.S., Charry K.V.R., Prasad R., Green Chem., 4 (2002), 558.
  • [18] Sreekumar K., Mathew T., Devassy B.M., Rajgopal R., Vetrivel R., Rao B.S., Appl. Catal. A Gen., 20 (2001), 11.
  • [19] Pannaparayil T., Komarneni S., Marande R., Zardrho M., J. Appl. Phys., 67 (1990), 5509.
  • [20] Zhao W., Fang M., Wu F., Wu H., Wang L. Chen G., J. Mater. Chem., 20 (2010), 5817.
  • [21] Ramesh S., J. Nanosci. Nanotechno., 2013 (2013), 929321.
  • [22] Goswami N., Sen P., Solid State Commun., 132 (2004), 791.
  • [23] Goswami N., Sen P., J. Nanopart. Res., 9 (2007), 513.
  • [24] Goswami N., Sen P., Mater. Res. Express, 1 (2014), 25001.
  • [25] Sahai A., Goswami N., Kaushik S.D., Tripathi S., Appl. Surf. Sci., 390 (2016), 974.
  • [26] Goswami N., Sen P., Appl. Surf. Sci., 425 (2017), 576.
  • [27] Yamauchi S., Goto Y., Hariu T., J. Cryst. Growth, 260 (2004), 1.
  • [28] Siwach O.P., Sen P., J. Nanopart. Res., 10 (2008), 107.
  • [29] Kaufmann E.N., Characterization of Materials, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
  • [30] Sahai A., Goswami N., Physica E, 58 (2014), 130.
  • [31] Zeng H., Cai W., Li Y., Hu J., Liu P., J. Phys. Chem. B, 109 (2005), 18260.
  • [32] Sahai A., Kumar Y., Agarwal V., Olivemendez S.F., Goswami N., J. Appl. Phys., 116 (2014), 164315.
  • [33] Pankove J.I., Optical Processes in Semiconductors, Dover, New York, 1971.
  • [34] Goswami N., Sharma D.K., Physica E, 42 (2010), 1675.
  • [35] Hu Y., Chen H.J., J. Nanopart. Res., 10 (2008), 401.
  • [36] Madelung O., Semiconductors: Data Handbook, Springer, New York, 2004.
  • [37] Kumar S., Mukherjee S., Singh R.K., Chatterjee S., Ghosh A.K., J. Appl. Phys., 110 (2011), 103508.
  • [38] Srivastava A.K., Deepa M., Bahadur N., Goyat M.S., Mater. Chem. Phys., 114 (2099), 194.
  • [39] Dijken A.V., Meulenkamp E., Vanmaekelbergh D., Meijerink A., J. Lumin., 90 (2000), 123.
  • [40] Shebanova O.N., Lazor P., J. Solid State Chem., 174 (2003), 424.
  • [41] Wang Z., Schiferl D., Zhao Y., O’neill H.ST.C., J. Phys. Chem. Solids, 64 (2003), 2517.
  • [42] Gonzalez-Angeles A., Mendoza-Suarez G., Gruskova A., Papanova M., Slama J., Mater. Lett., 59 (2005), 26.
  • [43] Saikiaa K., Kaushikb S.D., Sen D., Mazumder S., Deb P., Appl. Surf. Sci., 379 (2016), 530.
  • [44] Romcevic N., Kostic R., Romcevic M., Hadzic B., Kudelska I.K., Dobrowolski W., Narkiewicz U., Sibera D., Acta Phys. Pol. A, 114 (2008), 1323.
  • [45] Damen T.C., Porto S.P.S., Tell B., Phys. Rev., 142 (1966), 570.
  • [46] Arguello C.A., Rousseau D.L., Porto S.P.S., Phys. Rev., 181 (1969), 1351.
  • [47] Goswami N., Sahai A., Mater. Res. Bull., 48 (2013), 346.
  • [48] Graves P.R., Johnston C., Campaniello J.J., Mater. Res. Bull., 23 (1988), 1651.
  • [49] Gasparov L.V., Tanner D.B., Romero D.B., Berger H., Margaritondo G., Forro L., Phys. Rev. B, 62 (2000), 7939.
  • [50] Dunnwald J., Otto A., Corros. Sci., 29 (1989), 1167.
  • [51] Verble J.L., Phys. Rev. B, 9 (1974), 5236.
  • [52] Hart T.R., Adams S.B., Tempkin H., Balkanski M., Leite R., Porto S., Proc. Inter. Conf. Light Scatter. Sol., (1976), 254.
  • [53] Degiorgi L., Blatter-Mörke I., Wachter P., Phys. Rev. B, 35 (1987), 5421.
  • [54] Gupta R., Sood A.K., Metcalf P., Honig J.M., Phys. Rev. B, 65 (2002), 104430.
  • [55] Bersani D., Lottici P.P., Montenero A., J. Raman Spectrosc., 30 (1999), 355.
  • [56] De Faria D.L.A., Silva S.V., De Oliveira M.T., J. Raman Spectrosc., 28 (1997), 873.
  • [57] Ohtsuka T., Kubo K., Sato N., Corrosion-US, 42 (1986), 476.
  • [58] Boucherit N., Goff A.H., Joiret S., Corros. Sci., 32 (1991), 497.
  • [59] Thierry D., Persson D., Leygraf C., Boucherit N., Goff A.H., Corros. Sci., 32 (1991), 273.
  • [60] Li J.M., Huan A.C.H., Phys. Rev. B, 61 (2000), 6876.
  • [61] Wang Z., Lazor P., Saxena S.K., O’neill H.S.C., Mat. Res. Bull., 37 (2002), 1589.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c6b567b8-b842-4fce-b29d-7214b789ac29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.