Czasopismo
2024
|
Vol. 72, nr 1
|
art. no. e147919
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces a novel approach to building network cluster structures, based on the modified LEACH algorithm. The proposed solution takes into account the multitasking of the network infrastructure, resulting from various functions performed by individual nodes. Therefore, instead of a single head, dedicated to a given cluster, a set of heads is selected, the number of which corresponds to the number of performed functions. Outcomes of simulations, comparing the classical and the multifunctional approach, are presented. The obtained results confirm that both algorithms deliver similar levels of energy consumption, as well as efficiency in terms of the number of individual nodes discharged.
Rocznik
Tom
Strony
art. no. e147919
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Department of Complex Systems, Rzeszow University of Technology, Al. Powstańców Warszawy 12, Rzeszów 35-959, Poland, andrzejp@prz.edu.pl
autor
- Rzeszow University of Technology, Al. Powstańców Warszawy 12, Rzeszów 35-959, Poland
autor
- Department of Complex Systems, Rzeszow University of Technology, Al. Powstańców Warszawy 12, Rzeszów 35-959, Poland
autor
- Systems Research Institute Polish Academy of Sciences, Newelska 6, Warszawa 01-447, Poland
autor
- Systems Research Institute Polish Academy of Sciences, Newelska 6, Warszawa 01-447, Poland
autor
- Department of Technical Cybernetics, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
- [1] A. Hazra, P. Rana, M. Adhikari, and T. Amgoth, “Fog computing for next-generation Internet of Things: Fundamental, state-of-the-art and research challenges,” Comput. Sci. Rev., vol. 48, p. 100549, 2023, doi: 10.1016/j.cosrev.2023.100549.
- [2] A. Dimou, C. Iliopoulos, E. Polytidou, S.K. Dhurandher, G. Papadimitriou, and P. Nicopolitidis, “A Comprehensive Review on Edge Computing: Focusing on Mobile Users,” in Advances in Computing, Informatics, Networking and Cybersecurity, vol. 289, P. Nicopolitidis, S. Misra, L.T. Yang, B. Zeigler, and Z. Ning, Eds. Cham: Springer International Publishing, 2022, pp. 121–152. doi: 10.1007/978-3-030-87049-2_30.
- [3] V.K. Prasad, M.D. Bhavsar, and S. Tanwar, “Influence of Montoring: Fog and Edge Computing,” Scalable Comput.-Pract. Exp., vol. 20, no. 2, pp. 365–376, 2019, doi: 10.12694/scpe.v20i2.1533.
- [4] R. Basir, N.A. Chughtai, M. Ali, S. Qaisar, and A. Hashimi, “Mode selection, caching and physical layer security for fog networks,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 5, p. e142652, 2022, doi: 10.24425/bpasts.2022.142652.
- [5] S. Chen and L. Tang, “Flexible English Learning Platform using Collaborative Cloud-Fog-Edge Networking,” Scalable Comput.-Pract. Exp, vol. 24, no. 3, pp. 339–354, Sep. 2023, doi: 10.12694/scpe.v24i3.2224.
- [6] D. Rosendo, A. Costan, P. Valduriez, and G. Antoniu, “Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature review,” J. Parallel Distrib. Comput., vol. 166, pp. 71–94. 2022, doi: 10.1016/j.jpdc.2022.04.004.
- [7] A. Paszkiewicz et al., “Network Load Balancing for Edge-Cloud Continuum Ecosystems” in Proc. Innovations in Electrical and Electronic Engineering ICEEE, 2022, doi: 10.1007/978-981-19-1677-9_56.
- [8] Y. Bar-Yam. Dynamics of complex systems. CRC Press, 2019. doi: 10.1201/9780429034961.
- [9] G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, and G. Caldarelli, “The statistical physics of real-world networks”, Nat. Rev. Phy.s, vol. 1, no. 1, pp. 58–71, 2019, doi: 10.1038/s42254-018-0002-6.
- [10] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of Wireless Sensor Networks: An Up-to-Date Survey,“ Appl. Syst. Innov., vol. 3, no. 1, p. 14, 2020, doi: 10.3390/asi3010014.
- [11] K.U. Jaseena and B.C. Kovoor, “Deterministic weather forecasting models based on intelligent predictors: A survey,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 6, pp. 3393–3412, 2022, doi: 10.1016/j.jksuci.2020.09.009.
- [12] J. Miranda, P. Ponce, A. Molina, and P. Wright, “Sensing, smart and sustainable technologies for Agri-Food 4.0,” Comput. Ind., vol. 108, pp. 21–36, 2019, doi: 10.1016/j.compind.2019.02.002.
- [13] G. Elhayatmy, N. Dey, and A.S. Ashour, “Internet of Things Based Wireless Body Area Network in Healthcare,” in Internet of Things and Big Data Analytics Toward Next-Generation Intelligence, vol. 30, Springer, Cham, 2018, pp. 3–20, doi: 10.1007/978-3-319-60435-0_1.
- [14] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proc. 33rd Annual Hawaii International Conference on System Sciences, 2000, vol. 2, pp. 10, doi: 10.1109/HICSS.2000.926982.
- [15] P. Szmeja et al., “ASSIST-IoT: A Modular Implementation of a Reference Architecture for the Next Generation Internet of Things,” Electronics, vol. 12, p. 854, 2023, doi: 10.3390/electronics12040854.
- [16] H. Balakrishnan, A.P. Chandrakasan, and W.B. Heinzelman, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Trans. Wirel. Commun., vol. 1, no 4, pp. 660–670, 2002, doi: 10.26636/jtit.2021.147420.
- [17] M. Tong and M. Tang, “LEACH-B: An Improved LEACH Protocol for Wireless Sensor Network,” 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), China, 2010, pp. 1–4, doi: 10.1109/WICOM.2010.5601113.
- [18] F. Xiangning and S. Yulin, “Improvement on LEACH Protocol of Wireless Sensor Network,” in Proc. International Conference on Sensor Technologies and Applications (SENSORCOMM), 2007, pp. 260–264, doi: 10.1109/SENSORCOMM.2007.4394931.
- [19] V. Loscri, G. Morabito, and S. Marano, “A two-levels hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH),” in Proc. IEEE 62 nd Vehicular Technology Conference, 2005, pp. 1809–1813, doi: 10.1109/VETECF.2005.1558418.
- [20] E.S. Fard, and M.H. Nadimi, “Routing Protocol of Wireless Sensor Network (ED-LEACH),” Int. J. Sens. Sens. Netw., vol. 2, no. 3, pp. 26–30. doi: 10.11648/j.ijssn.20140203.11.
- [21] L.Q. Guo, Y. Xie, C.H. Yang, and Z.W. Jing, “Improvement on LEACH by combining Adaptive Cluster Head Election and Two-hop transmission,” in Proc. International Conference on Machine Learning and Cybernetics, 2010, pp. 1678–1683, doi: 10.1109/ICMLC.2010.5580988.
- [22] J. Chen and H. Shen, “MELEACH-L: More Energy-Efficient LEACH for Large-Scale WSNs,” in Proc. 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008, pp. 14, doi: 10.1109/WiCom.2008.915.
- [23] W. Wang, F. Du, and Q. Xu, “An Improvement of LEACH Routing Protocol Based on Trust for Wireless Sensor Networks,” in Proc. 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009, pp. 1–4, doi: 10.1109/WICOM.2009.5303346.
- [24] M.S. Ali, T. Dey, and R. Biswas, “ALEACH: Advanced LEACH routing protocol for wireless microsensor networks,” International Conference on Electrical and Computer Engineering, 2008, pp. 909914, doi: 10.1109/ICECE.2008.4769341.
- [25] L.S. Yan, W. Pan, B. Luo, J.T. Liu, and M.F. Xu, “Communication Protocol Based on Optical Low-Energy-Adaptive-Clustering-Hierarchy (O-LEACH) for Hybrid Optical Wireless Sensor Networks,” in Proc. Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optica Publishing Group, 2009), p. ThCC3.
- [26] M.A. Abuhelaleh, T.M. Mismar and A.A. Abuzneid, “Armor-LEACH – Energy Efficient, Secure Wireless Networks Communication,” in Proc. 17th International Conference on Computer Communications and Networks, 2008, pp. 17, doi: 10.1109/ICCCN.2008.ECP.142.
- [27] G.S. Kumar, P.M. Vinu, and K.P. Jacob, “Mobility metric based leach-mobile protocol,” in Proc. 16th International Conference on Advanced Computing and Communications, 2008, pp. 248–253, doi: 10.1109/ADCOM.2008.4760456.
- [28] G. Yi, S. Guiling, L. Weixiang, and P. Yong, “Recluster-LEACH: A recluster control algorithm based on density for wireless sensor network,” in Proc. 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), 2009, pp. 198–202, doi: 10.1109/PEITS.2009.5406834.
- [29] M.O. Farooq, A.B. Dogar, and G.A. Shah, “MR-LEACH: Multi-hop Routing with Low Energy Adaptive Clustering Hierarchy,” in Proc. International Conference on Sensor Technologies and Applications, 2010, pp. 262–268, doi: 10.1109/SENSOR-COMM.2010.48.
- [30] H. Li, “An energy efficient routing algorithm for heterogeneous wireless sensor networks,” in Proc. International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, pp. V3-612–V3-616, doi: 10.1109/ICCASM.2010.5620564.
- [31] M.B. Yassein, A. Al-zou’bi, Y. Khamayseh, and W. Mardini, “Improvement on LEACH protocol of wireless sensor network (VLEACH),” Int. J. Digit. Content Technol. Appl., vol. 3, no. 2, pp. 132–136, 2009, doi: 10.4156/jdcta.vol3.issue2.yassein.
- [32] A. Miglani, T. Bhatia, G. Sharma, and G. Shrivastava, “An Energy Efficient and Trust Aware Framework for Secure Routing in LEACH for Wireless Sensor Networks,” Scalable Comput.-Pract. Exp., vol. 18, no. 3, pp. 207–218, 2017, doi: 10.12694/scpe.v18i3.1301.
- [33] S. Varshney and R. Kuma, “Variants of LEACH Routing Protocol in WSN: A Comparative Analysis,” 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2018, pp. 199–204, doi: 10.1109/CONFLUENCE.2018.8442643.
- [34] W. Jin, G. Xiujian, K. Arun, and K. ye-Jin, “An empower hamilton loop based data collection algorithm with mobile agent for WSNs,” Human-centric Comput. Inf. Sci., vol. 9, p. 18, 2019, doi: 10.1186/s13673-019-0179-4.
- [35] S. Chen, J. Zhou, X. Zheng, and X. Ruan, “Energy-Efficient Data Collection Scheme for Environmental Quality Management in Buildings,” IEEE Access, vol. 6, pp. 57324–57333, 2018, doi: 10.1109/ACCESS.2018.2873789.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c649969d-58b7-4f7a-ac86-96c4520f4f18