Warianty tytułu
Języki publikacji
Abstrakty
Stara Nida represents one of the three hydrological channels traversing the Nadnidziański Landscape Park, a locale characterized by ecological diversity within the Nida valley, Poland. Historically rendered inactive due to flow regulation, this specific river branch underwent restoration in February 2023 as a pivotal component of the “Restoration of the Inland Delta of the Nida River” project. The revitalization of Stara Nida has precipitated beneficial ecological metamorphoses within the landscape. To evaluate the impact of the restoration of the Stara Nida branch on the physicochemical characteristics of water in the landscape, systematic sampling of regional SW and GW was conducted. The sampling duration covered a 12-month period, segmented into two phases: the first six months leading up to the restoration (from February 2022 to July 2022) and the subsequent six months following the restoration of the Stara Nida branch (from February 2023 to July 2023). A total of 114 water samples were collected from 10 distinct sampling locations. In-situ measurements of key indicators, including temperature (T), electrical conductivity (EC), dissolved oxygen (DO), pH, and total dissolved solids (TDS), were performed using handheld devices. Concurrently, laboratory analyses were carried out for total nitrogen (TN), total phosphorus (TP), chloride (Cl–), sulfate (SO42–), manganese (Mn2+), iron (Fe2+,3+), zinc (Zn2+), cadmium (Cd2+), lead (Pb2+), copper (Cu2+), and chemical oxygen demand (COD). Statistical analyses encompassed the Shapiro-Wilk test (α = 0.05) and the Wilcoxon (Mann-Whitney) rank sum test (α = 0.05) to discern significant disparities in physicochemical indicators at sampling points pre- and post-restoration of the Stara Nida branch. Additionally, Pearson correlation analysis (α = 0.001) was employed to evaluate overarching changes at the sampling points attributable to the impact of the Stara Nida branch restoration.
Czasopismo
Rocznik
Tom
Strony
182--194
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland, phancongngoc1402@gmail.com
- Institute of Chemistry, Biology and Environment, Vinh University, 182 Le Duan St, Vinh City, Nghe An Province, Vietnam
autor
- Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland, rmstruzy@cyf-kr.edu.pl
autor
- Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland, t.kowalik@urk.edu.pl
Bibliografia
- 1. Amadi A.N., Olasehinde P.I., Yisa J. 2010. Characterization of groundwater chemistry in the coastal plain-sand aquifer of Owerri using factor analysis. International Journal of the Physical Sciences, 5(8), 1306–1314. Available online at http://www. academicjournals.org/IJPS
- 2. APHA 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC. American Public Health Association, pp. 1325
- 3. Benrabah S., Attoui B., Hannouche M. 2016. Characterization of groundwater quality destined for drinking water supply of Khenchela City (eastern Algeria). Journal of Water and Land Development, 30, 13–20. https://doi.org/10.1515/jwld-2016-0016
- 4. Beyaitan Bantin A., Wang H., Jun X. 2020. Analysis and control of the physicochemical quality of groundwater in the Chari Baguirmi Region in Chad. Water, 12(10), 2826. https://doi.org/10.3390/w12102826
- 5. Bogdał A., Kowalik T., Ostrowski K., Skowron, P. 2016. Seasonal variability of physicochemical parameters of water quality on length of Uszwica river. J. Ecol. Eng, 17(1), 161–170. https://doi.org/10.12911/22998993/61206
- 6. Borden R.C., Daniel R.A., LeBrun L.E., Davis C.W. 1997. Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resour. Res., 33, 1105–1115. https://doi.org/10.1029/97WR00014
- 7. Borek Ł., Drymajło K. 2019. The role and importance of irrigation system for increasing the water resources: the case of the Nida River valley. ASP.FC., 18, 1930. https://doi.org/10.15576/ASP.FC/2019.18.3.19
- 8. Boyd C.E. 1999. Water quality: An introduction. Dordrecht. Kluwer Academic Publishers Group, 330.
- 9. Cel W., Kujawska J., Wasąg H. 2017. Impact of hydraulic fracturing on the quality of natural waters. J. Ecol. Eng., 18, 63–68. https://doi.org/10.12911/22998993/67852
- 10. Clilverd H.M., White D.M., Tidwell A.C., Rawlins M.A. 2011. The sensitivity of northern groundwater recharge to climate change: A case study in Northwest Alaska. Journal of the American Water Resources Association, 47, 1228–1240. https://doi.org/10.1111/j.1752-1688.2011.00569.x
- 11. Conant B., Cherry J.A., Gillham R.W. 2004. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Journal of Contaminant Hydrology, 73, 249–279. https://doi.org/10.1016/j. jconhyd.2004.04.001
- 12. Costello M.J., McCarthy T.K., O’Farrell M.M. 1984. The stoneflies (Plecoptera) of the Corrib catchment area, Ireland. Annls Limnol, 20, 25–34. https://doi.org/10.1051/limn/1984014
- 13. Demaku S., Bajraktari N. 2019. Physicochemical analysis of the water wells in the area of Kosovo energetic corporation (Obiliq, Kosovo). J. Ecol. Eng., 20, 155–160. https://doi.org/10.12911/22998993/109874
- 14. Dohare D., Deshpande S., Kotiya A. 2014. Analysis of groundwater quality parameters: A review. Research Journal of Engineering Sciences, 3(5), 26–31
- 15. Dong G.J., Daewoong J., Seong H.K. 2019. Characterization of total-phosphorus (TP) pretreatment microfluidic chip based on a thermally enhanced photocatalyst for portable analysis of eutrophication. Sensors, 19(16), 3452. https://doi.org/10.3390/s19163452.
- 16. El Maghraby M.M.S., El Nasr A.Kh.O.A., Hamouda M.S.A. 2013. Quality assessment of groundwater at south Al Madinah Al Munawarah area, Saudi Arabia. Environmental Earth Sciences, 70(4), 15251538. https://doi.org/10.1007/s12665-013-2239-9
- 17. EPA 1983. Methods for chemical analysis of water and wastes. Washington, DC. United States Environmental Protection Agency, 491
- 18. Findlay S. 1995. Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnol. Oceanogr., 40, 159–164. https://doi.org/10.4319/lo.1995.40.1.0159
- 19. Giese M., Haaf E., Heudorfer B., Barthel R. 2020. Comparative hydrogeology – reference analysis of groundwater dynamics from neighbouring observation wells. Hydrological Sciences Journal, 65, 1685–1706. https://doi.org/10.1080/02626667.2020.1762888
- 20. Greenwood N.N., Earnshaw A. 1984. Chemistry of the elements. Oxford. Pergamon Press, 1542. https://doi.org/10.1002/crat.2170200510
- 21. Hendricks S.P., White D.S. 1991. Physicochemical patterns within a hyporheic zone of a northern Michigan river, with comments on surface water patterns. Can. J. Fish. Aquat. Sci., 48, 1645–1654. https://doi.org/10.1139/f91-195
- 22. Imam T.S. 2012. Assessment of heavy metal concentrations in the surface water of Bompai-Jakara Drainage Basin, Kano State, Northern Nigeria. Bayero Journal of Pure and Applied Science, 5(1), 103–108. https://doi.org/10.4314/bajopas.v5i1.19
- 23. Jasechko S., Wassenaar L.I., Mayer B. 2017. Isotopic evidence for widespread cold season biased groundwater recharge and young streamflow across central Canada. Hydrological Processes, 31(12), 2196–2209. https://doi.org/10.1002/hyp.11175
- 24. Kirkinen J., Martikainen A., Holttinen H., Savolainen I., Auvinen O., Syri S. 2005. Impacts on the energy sector and adaptation of the electricity network business under a changing climate in Finland. FINADAPT Working Paper 10. Finnish Environment Institute Mimeographs. Helsinki, 340, 36.
- 25. Kovalevskii V.S. 2007. Effect of climate changes on groundwater. Water Resource, 34, 140–152. https:// doi.org/10.1134/S0097807807020042
- 26. Kowalik T., Bogdał A., Borek Ł., Kogut A. 2015. The effect of treated sewage outflow from a modernized sewage treatment plant on water quality of the Breń River. J. Ecol. Eng., 16, 96–102. https://doi.org/10.12911/22998993/59355
- 27. Krapac I.G., Dey W.S., Roy W.R., Smyth C.A., Storment E., Sargent S.L., Steele J.D. 2002. Impacts of swine manure pits on groundwater quality. Environmental Pollution, 120, 475–492. https://doi.org/ 10.1016/s0269-7491(02)00115-x
- 28. Łajczak A. 2004. Negative consequences of regulation of a meandering sandy river and proposals tending to diminish flood hazard. Case study of the Nida river, southern Poland. Proceedings of the Ninth International Symposium on River Sedimentation. Yichang, China. Beijing. IAHR, 1773–1783
- 29. Meixner T., Manning A.H., Stonestrom D.A., Allen D.M., Ajami H., Blasch K.W., Walvoord M.A. 2016. Implications of projected climate change for groundwater recharge in the western United States. Journal of Hydrology, 534, 124–138. https://doi. org/10.1016/j.jhydrol.2015.12.027
- 30. Minns C.K. 1989. Factors affecting fish species richness in Ontario Lakes. Transactions of American Fisheries Society, 118, 533–454. https://doi. org/10.1577/1548-8659(1989)118<0533:FAFSRI >2.3.CO;2
- 31. Nowobilska-Luberda, A. 2018. Physicochemical and bacteriological status of surface waters and groundwater in the selected catchment area of the Dunajec river basin. J. Ecol. Eng., 19, 162–169. https://doi.org/10.12911/22998993/86329
- 32. Phan C.N., Strużyński A., Kowalik T. 2023a. Correlation between hydrochemical component of surface water and groundwater in Nida valley, Poland. J. Ecol. Eng., 24(12), 167–177. https://doi. org/10.12911/22998993/172424
- 33. Phan C.N., Strużyński A., Kowalik T. 2023b. Monthly changes in physicochemical parameters of the groundwater in Nida valley, Poland (case study). Journal of water and Land development, 56 (1–3), 220–234. https://doi.org/10.24425/ jwld.2023.143763
- 34. Popoola L.T., Yusuf A.S., Aderibigbe T.A. 2019. Assessment of natural groundwater physico-chemical properties in major industrial and residential locations of Lagos Metropolis. Applied Water Science, 9, 191. https://doi.org/10.1007/s13201-019-1073-y
- 35. Pitkin S.E., Cherry J.A., Ingleton R.A., Broholm M. 1999. Field demonstrations using the waterloo ground water profiler. Ground Water Monit. Remediat, 19, 122–131. https://doi. org/10.1111/j.1745-6592.1999.tb00213.x
- 36. Rinderer M., van Meerveld H.J., Seibert J. 2014. Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid? Water Resour. Res., 50, 60676080. https://doi.org/10.1002/2013WR015009
- 37. Strużyński A., Książek L., Bartnik W., Radecki-Pawlik A., Plesiński K., Florek J., Wyrębek M., Strutyński, M. 2015. Wetlands in river valleys as an effect of fluvial processes and anthropopression. In: Ignar, S., Grygoruk, M. (Eds.), Wetlands and Water Framework Directive, GeoPlanet: Earth and Planetary Sciences. Springer International Publishing, Cham, 6990. https://doi.org/10.1007/978-3-319-13764-3_5
- 38. Subhan M., Asghar M., Muhammad K. 2008. Physicochemical study of surface and ground water of Taluka Nawabshah, District Nawabshah, Sindh, Pakistan. Journal – Chemical Society Pakistan, 30(6), 950–953.
- 39. Valett H.M., Fisher S.G., Stanley E.H. 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran desert stream. Journal of the North American Benthological Society, 9, 201–215. https://doi.org/10.2307/1467584
- 40. Voudouris K., Mandrali P., Kazakis N. 2018. Preventing groundwater pollution using vulnerability and risk mapping: The case of the Florina Basin, NW Greece. Geosciences, 8(4), 129. https://doi.org/10.3390/geosciences8040129
- 41. Vrana B., Allan I.J., Greenwood R., Mills G.A., Dominiak E., Svensson K., Knutsson J., Morrison G. 2005. Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry, 24, 845–868. https://doi.org/10.1016/j. trac.2005.06.006
- 42. Wang G., Su M.Y., Chen Y.H., Lin F.F., Luo D., Gao S.F. 2006. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 144, 127–135. https://doi.org/10.1016/j.envpol.2005.12.023
- 43. WHO 2004. Guidelines for drinking water quality. Third edition incorporating the first and second addenda. Vol. 1. Recommendations [online]. Geneva, Switzerland. World Health Organization, 515. [Access 10.06.2022]. Available at: https://www.who. int/publications/i/item/9789241547611
- 44. WHO 2017. Guidelines for drinking-water quality [online]. 4th ed. Geneva, Switzerland. World Health Organization, 541. [Access 10.06.2022]. Available at: https://apublica.org/wp-content/uploads/2014/03/Guidelines-OMS-2011.pdf
- 45. Wojak S., Strużyński A., Wyrębek M. 2023. Analysis of changes in hydraulic parameters in a lowland river using numerical modeling. ASP.FC, 22, 3–17. https:// doi.org/10.15576/ASP.FC/2023.22.1.3 (in Polish)
- 46. Zanini L., Robertson W.D., Ptacek C.J., Schiff S.L., Mayer T. 1998. Phosphorous characterization in sediments impacted by septic effluent at four sites in central Canada. Journal of Contaminant Hydrology, 33, 405429. https://doi.org/10.1016/S0169-7722(98)00082-5.
- 47. Żelazo J. 1993. The recent views on the small lowland river training. In: Nature and environment conservation in the lowland river valleys in Poland. Ed. L. Tomiałojć. Kraków. IOP PAN, 145–154. (in Polish)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c648ab83-3fba-4d4a-9ad1-34c3be0ac07d