Czasopismo
2023
|
No. 65 (1)
|
117--140
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Efforts towards the numerical simulation of the Baltic Sea wave properties, started in the 1950s, have reached maturity by the implementation of contemporary third generation spectral wave models, such as WAM and SWAN. The purpose of this paper is to give an overview of the relevant efforts since the beginning of numerical wave simulations. The Sverdrup-Munk-Bretschneider (SMB) type models are still valuable tools for rapid estimates of some properties of wave climate in single locations. The spatial resolution of spectral wave models for the entire sea has increased from about 20 km to 1 km, and to 100–200 m in specific areas. The number of directional bins has increased from 10–15 to 24–36 and the number of spectral frequency bins from about 15 to 35–42. The models replicate all main features of the wave climate of the Baltic Sea, such as an overall mild but intermittent wave climate, the predominance of short windseas and the scarcity of long swell, east-west asymmetry, the strong impact of seasonal ice, and the specific properties of wave growth in some areas. The wave climate changes involve variations in regional wave intensity, core properties of wave-driven sediment transport and wave set-up. Reconstruction of wave properties in the nearshore, archipelago areas, and in narrow subbasins remains a challenge. These areas require finer spatial resolution and possibly advancement of wave physics to account for changes in the spectral composition of wave fields and specific features of wave growth in narrow basins. Progress in these fields is a pillar for a number of applications, from the quantification of sediment transport to proper input into management issues of the coastal zone.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
117--140
Opis fizyczny
Bibliogr. 228 poz., map., wykr.
Twórcy
autor
- Department of Cybernetics, School of Science, Tallinn University of Technology, Estonia, soomere@cs.ioc.ee
- Estonian Academy of Sciences, Tallinn, Estonia
Bibliografia
- 1. Alari, V., Raudsepp, U., 2010. Depth induced breaking of wind generated surface gravity waves in Estonian coastal waters. Boreal Environ. Res. 15 (3), 295-300. http://www.borenv.net/BER/archive/pdfs/ber15/ber15-295.pdf
- 2. Alari, V., Raudsepp, U., 2012. Simulation of wave damping near coast due to offshore wind farms. J. Coast. Res. 28 (1), 143-148. https://doi.org/10.2112/JCOASTRES-D-10-00054.1
- 3. Alari, V., Raudsepp, U., Kõuts, T., 2008. Wind wave measurements and modelling in Küdema Bay, Estonian Archipelago Sea. J. Mar. Syst. 74, S30-S40. https://doi.org/10.1016/j.jmarsys.2007.11.014
- 4. Alari, V., Staneva, J., Breivik, O., Bidlot, J.R., Mogensen, K., Janssen, P., 2016. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model. Ocean Dyn. 66 (8), 917-930. https://doi.org/10.1007/s10236-016-0963-x
- 5. Alexandersson, H., Schmith, T., Iden, K., Tuomenvirta, H., 1998. Long-term variations of the storm climate over NW Europe. The Global Atm. Ocean System 6, 97-120.
- 6. Aps, R., Suursaar, Ü., 2011. Influence of seasonal sea ice conditions on hydrodynamic processes and oil spill drift. In: Benassai, G., Brebbia, C.A., Rodriguez, G. (Eds.), Coastal Processes II. 2nd International Conference on Physical Coastal Processes, Management and Engineering, April 27—29, 2011, Naples, Italy. WIT Transactions on Ecology and the Environment, 149, 309-320. https://www.witpress.com/Secure/elibrary/papers/CP11/CP11026FU1.pdf
- 7. Apukhtin, A.A., Bessan, G.N., Gordeeva, S.M., Klevannaya, M.K., Klevannyy, K.A., 2017. Simulation of the probable maximum flood in the area of the Leningrad nuclear power plant with account of wind waves. Russian Meteorology and Hydrology 42 (2), 113-120. https://doi.org/10.3103/S1068373917020054
- 8. Ardag, D., Resio, D.T., 2019. Inconsistent spectral evolution in operational wave models due to inaccurate specification of nonlinear interactions. J. Phys. Oceanogr. 49 (3), 705-722. https://doi.org/10.1175/JPO- D- 17- 0162.1
- 9. Baerens, C., Baudler, H., Beckmann, B.-R., Birr, H.-D., Dick, S., Hofstede, J., Kleine, E., Lampe, R., Lemke, W., Meinke, I., Michael, M., Müller, R., Müller-Navarra, S.H., Schmager, G., Schwarzer, K., Zenz, T., Hupfer, P., Harff, J., Sterr, H., Stigge, H.J., 2003. Die Wasserstände an der Ostseeküste-Ent-wicklungen -Sturmfluten-Klimawandel 4. Auswirkungen von Wasserstandsschwankungen an der Küste. Die Küste 66, 217-297 (Sonderheft). Heide, Holstein: Boyens. Badur, J., Cie´slikiewicz, W., 2018. Spatial variability of long-term trends in significant wave height over the Gulf of Gdańsk using System Identification techniques. Oceanol. Hydrobiol. St. 47 (2), 190-201. https://doi.org/10.1515/ohs-2018-0018
- 10. Bagocius, D., Narscius, A., 2018. Simplistic underwater ambient noise modelling for shallow coastal areas: Lithuanian area of the Baltic Sea. Ocean Eng. 164, 521-528. https://doi.org/10.1016/j.oceaneng.2018.06.055
- 11. Berg, C., 2008. Validation of the WAM model over the Baltic Sea. Department of Earth Sciences, Uppsala University Student thesis, No. 156, 30 pp.
- 12. Bernhoff, H., Sjostedt, E., Leijon, M., 2006. Wave energy resources in sheltered sea areas: A case study of the Baltic Sea. Renew. Energy 31 (13), 2164-2170. https://doi.org/10.1016/j.renene.2005.10.016
- 13. Bertotti, L., Cavaleri, L., 2009. Wind and wave predictions in the Adriatic Sea. J. Mar. Syst. 78, S227-S234. https://doi.org/10.1016/j.jmarsys.2009.01.018
- 14. Bierstedt, S.E., Hünicke, B., Zorita, E., 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A 67, 29073. https://doi.org/10.3402/tellusa.v67.29073
- 15. Björkqvist, J.-V., Tuomi, L., Pettersson, H., Fortelius, C., Tikka, K., Kahma, K.K., 2014. The effect of boundary field accuracy on high-resolution coastal wave modelling. 6th IEEE/OES Baltic International Symposium (BALTIC) Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26—29, 2014, Tallinn, Estonia. IEEE OES, 6887856. https://doi.org/10.1109/BALTIC.2014.6887856
- 16. Björkqvist, J.-V., Tuomi, L., Fortelius, C., Pettersson, H., Tikka, K., Kahma, K.K., 2017a. Improved estimates of nearshore wave conditions in the Gulf of Finland. J. Mar. Syst. 171, 43-53. https://doi.org/10.1016/j.jmarsys.2016.07.005
- 17. Björkqvist, J.-V., Tuomi, L., Tollman, N., Kangas, A., Pettersson, H., Marjamaa, R., Jokinen, H., Fortelius, C., 2017b. Brief communication: Characteristic properties of extreme wave events observed in the northern Baltic Proper, Baltic Sea. Nat. Hazards Earth Syst. Sci. 17 (9), 1653-1658. https://doi.org/10.5194/nhess-17-1653-2017
- 18. Björkqvist, J.-V., Lukas, I., Alari, V., van Vledder, P.G., Hulst, S., Pettersson, H., Behrens, A., Männik, A., 2018a. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng. 152, 57-71. https://doi.org/10.1016/j.oceaneng.2018.01.048
- 19. Björkqvist, J.-V., Kanarik, H., Johansson, M.M., Tuomi, L., 2018b. A wave forecast for the Helsinki archipelago in the Gulf of Finland. 2018 IEEE/OES Baltic International Symposium (BALTIC). IEEE OES June 12—15, 2018. https://doi.org/10.1109/BALTIC.2018.8634863
- 20. Björkqvist, J.-V., Pettersson, H., Kahma, K.K., 2019. The wave spectrum in archipelagos. Ocean Sci. 15 (6), 1469-1487. https://doi.org/10.5194/os-15-1469-2019
- 21. Björkqvist, J.-V., Rikka, S., Alari, V., Männik, A., Tuomi, L., Pettersson, H., 2020. Wave height return periods from combined measurement-model data: a Baltic Sea case study. Nat. Hazards Earth Syst. Sci. 20 (12), 3593-3609. https://doi.org/10.5194/nhess-20-3593-2020
- 22. Björkqvist, J.-V., Pärt, S., Alari, V., Rikka, S., Lindgren, E., Tuomi, L., 2021. Swell hindcast statistics for the Baltic Sea. Ocean Sci. 17, 1815-1829. https://doi.org/10.5194/os- 17- 1815- 2021
- 23. Blomgren, S., Larson, M., Hanson, H., 2001. Numerical modeling of the wave climate in the southern Baltic Sea. J. Coast. Res. 17 (2), 342-352. https://journals.flvc.org/jcr/article/view/81296/78435
- 24. Bobertz, B., Harff, J., 2004. Sediment facies and hydrodynamic setting: a study in the south western Baltic Sea. Ocean Dyn. 54 (1), 39-48. https://doi.org/10.1007/s10236-003-0061-8
- 25. Bobertz, B., Kuhrts, C., Harff, J., Fennel, W., Seifert, I., Bohling, B., 2005. Sediment properties in the western Baltic Sea for use in sediment transport modeling. J. Coast. Res. 21 (3), 588-597. https://doi.org/10.2112/04-705A.1
- 26. Bobertz, B., Harff, J., Bohling, B., 2009. Parameterisation of clastic sediments including benthic structures. J. Mar. Syst. 75 (3—4), 371-381. https://doi.org/10.1016/j.jmarsys.2007.06.010
- 27. Booij, N., Ris, R., Holthuijsen, L., 1999. A third generation wave model for coastal regions, 1: model description and validation. J. Geophys. Res. 104, 7649—7666. https://doi.org/10.1029/98JC02622
- 28. Bonaduce, A., Staneva, J., Behrens, A., Bidlot, J.R., Wilcke, R.A.I., 2019. Wave climate change in the North Sea and Baltic Sea. J. Mar. Sci. Eng. 7 (6), 166. https://doi.org/10.3390/jmse7060166
- 29. Börngren, M., et al., 1998. Seegang. In: Raabe, A., Heintzenberg, J. (Ed.), Arnold, K. (Ed.), Hinneburg D., Tetzlaff, G., Börngen, M., Schönfeldt, H.J., Riechmann, F., Panin G., Stephan, M., Wind- und Seegangsatlas für das Gebiet um Darss und Zingst. Teil 2: Seegangsatlas. Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Uni Leipzig und dem Institut für Troposphärenforschung. e.V. Taschenbuch, Leipzig, 19-44.
- 30. Bretschneider, C.L., 1958. Revisions in wave forecasting: Deep and shallow water. In: Proc. 6th Int. Conf. Coastal Eng. ASCE, 30-67.
- 31. Broman, B., Hammarklint, T., Rannat, K., Soomere, T., Valdmann, A., 2006. Trends and extremes of wave fields in the north—eastern part of the Baltic Proper. Oceanologia 48 (S), 165-184.
- 32. Bruns, E., 1955. Handbuch der Wellen der Meere und Ozeane. VEB Deutscher Verlag der Wissenshaften, Berlin, 255 pp.
- 33. Burchard, H., Craig, P.D., Gemmrich, J.R., van Haren, H., Mathieu, P.P., Meier, H.E.M., Smith, W.A.M.N., Prandke, H., Rippeth, T.P., Skyllingstad, E.D., Smyth, W.D., Welsh, D.J.S., Wijesekera, H.W., 2008. Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Progr. Oceanogr. 76 (4), 399-442. https://doi.org/10.1016/j.pocean.2007.09.005
- 34. Christakos, K., Furevik, B.R., Aarnes, O.J., Breivik, Ø., Tuomi, L., Byrkjedal, Ø., 2020. The importance of wind forcing in fjord wave modeling. Ocean Dyn. 70 (1), 57-75. https://doi.org/10.1007/s10236-19-01323-w
- 35. Christakos, K., Björkqvist, J.-V., Tuomi, L., Furevik, B.R., Breivik, Ø., 2021. Modelling wave growth in narrow fetch geometries: The white-capping and wind input formulations. Ocean Modell. 157, 101730. https://doi.org/10.1016/j.ocemod.2020.101730
- 36. Chubarenko, B.V., Leitsina, L.V., Esiukova, E.E., Kurennoy, D.N., 2012. Model analysis of the currents and wind waves in the Vistula Lagoon of the Baltic Sea. Oceanology 52 (6), 748-753. https://doi.org/10.1134/S000143701206001X
- 37. Chubarenko, I.P., Esiukova, E.E., Bagaev, A.V., Bagaeva, M.A., Grave, A.N., 2018. Three-dimensional distribution of anthropogenic microparticles in the body of sandy beaches. Sci. Total Environ. 628-629, 1340-1351. https://doi.org/10.1016/j.scitotenv.2018.02.167
- 38. Cieślikiewicz, W., Herman, A., 2002. Numerical modelling of waves and currents over the Baltic Sea and the Gdask Bay. In: Proc. 28th Coastal Engineering Conference, 07—12 July 2002, Cardiff, UK. ASCE, vol. I, 176-187.
- 39. Cieślikiewicz, W., Paplińska-Swerpel, B., Soares, C.G., 2005. Multi-decadal wind wave modelling over the Baltic Sea. In: Coastal Engineering 2004 (29th International Conference on Coastal Engineering), Lisbon, Portugal. Vols. 1—4, 778-790.
- 40. Cieślikiewicz, W., Paplińska-Swerpel, B., 2008. A 44-year hindcast of wind wave fields over the Baltic Sea. Coast. Eng. 55, 894-905. https://doi.org/10.1016/j.coastaleng.2008.02.017
- 41. Cieślikiewicz, W., Dudkowska, A., Gic-Grusza, G., Jędrasik, J., 2017. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk. Ocean Dyn. 67 (11), 1461-1480. https://doi.org/10.1007/s10236-017-1098-4
- 42. Danchenkov, A.R., 2020. Wind waves and beach inundation width modelling for studying Curonian Spit national park foredune stability. Advances in Current Natural Sciences. Earth Sciences 3, 65-71 (in Russian).
- 43. Davidan, I.N., Lopatoukhin, L.I., Rozhkov, V.A., 1978. Windsea as a Probabilistic Hydrodynamic Process. Gidrometeoizdat, Leningrad, 256 pp. (in Russian).
- 44. de Mendoza, F.P., Bonamano, S., Martellucci, R., Melchiorri, C., Consalvi, N., Piermattei, V., Marcelli, M., 2018. Circulation during storms and dynamics of suspended matter in a sheltered coastal area. Remote Sens. 10 (4), 602. https://doi.org/10.3390/rs10040602
- 45. Deng, J.J., Zhang, W.Y., Harff, J., Schneider, R., Dudzinska-Nowak, J., Terefenko, P., Giza, A., Furmanczyk, K., 2014. A numerical approach for approximating the historical morphology of wave-dominated coasts-A case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204, 425-443. https://doi.org/10.1016/j.geomorph.2013.08.023
- 46. Deng, J.J., Harff, J., Schimanke, S., Meier, H.E.M., 2015. A method for assessing the coastline recession due to the sea level rise by assuming stationary wind-wave climate. Oceanol. Hydrobiol. Studies 44 (3), 362-380. https://doi.org/10.1515/ohs-2015-0035
- 47. Deng, J.J., Harff, J., Zhang, W.Y., Schneider, R., Dudzinska-Nowak, J., Giza, A, Terefenko, P., Furmanczyk, K., 2017. The dynamic equilibrium shore model for the reconstruction and future projection of coastal morphodynamics. In: Harff, J., Furmanczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East: Past and Future Projection. Coastal Research Library, 19. Springer, Cham, 87-106. https://doi.org/10.1007/978-3-319-49894-2_6
- 48. Dinardo, S., Fenoglio-Marc, L., Buchhaupt, C., Becker, M., Scharroo, R., Fernandes, M.J., Benveniste, J., 2018. Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv. Space Res. 62 (6), 1371-1404. https://doi.org/10.1016/j.asr.2017.12.018
- 49. Divinsky, B.V., Ryabchuk, D.V., Kosyan, R.D., Sergeev, A.Y., 2021. Development of the sandy coast: Hydrodynamic and morphodynamic conditions (on the example of the Eastern Gulf of Finland. Oceanologia 63 (2), 214-226. https://doi.org/10.1016/j.oceano.2020.12.002
- 50. Drägerdt, S., Carstensen, D., Horlacher, H.B., 2009. Wave propagation on a sand bar and in the sea area behind. In: Smith, J.M. (Ed.), Coastal Engineering 2008 (31st International Conference on Coastal Engineering, August 31—September 05, 2008, Hamburg, Germany), Vols. 1-5, 617-628. https://doi.org/10.1142/9789814277426_0052
- 51. Dreier, N., Schlamkow, C., Fröhle, P., 2011. Assessment of future wave climate on basis of wind-wave-correlations and climate change scenarios. J. Coast. Res. Special Issue 64, 201-214. https://www.jstor.org/stable/26482163.
- 52. Dreier, N., Schlamkow, C., Fröhle, P., Salecker, D., Xu, Z.-S., 2015. Assessment of changes of extreme wave conditions at the German Baltic Sea coast on the basis of future climate change scenarios. J. Mar. Sci. Technol.-Taiwan 23 (6), 839-845. https://doi.org/10.6119/JMST-015-0609-3
- 53. Dreier, N., Männikus, R., Fröhle, P., 2020. Long-term changes of waves at the German Baltic Sea soast: Are there trends from the past? J. Coast. Res. Special Issue 95, 1416-1421. https://doi.org/10.2112/SI95-274.1
- 54. Dreier, N., Nehlsen, E., Fröhle, P., Rechid, D., Bouwer, L.M., Pfeifer, S., 2021. Future changes in wave conditions at the German Baltic Sea coast based on a hybrid approach using an en- semble of regional climate change projections. Water 13 (2), 167. https://doi.org/10.3390/w13020167
- 55. Dudkowska, A., Borun, A., Malicki, J., Schonhofer, J., Gic-Grusza, G., 2020. Rip currents in the non-tidal surf zone with sandbars: numerical analysis versus field measurements. Oceanologia 62 (3), 291-308. https://doi.org/10.1016/j.oceano.2020.02.001
- 56. Dvornikov, A.Y., Martyanov, S.D., Ryabchenko, V.A., Eremina, T.R., Isaev, A.V., Sein, D.V., 2017. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant “Hanhikivi-1” on the local thermal regime. Earth Syst. Dyn. 8 (2), 265-282. https://doi.org/10.5194/esd-8-265-2017
- 57. Engström, J., Göteman, M., Eriksson, M., Bergkvist, M., Nilsson, E., Rutgersson, A., Strömstedt, E., 2020. Energy absorption from parks of point-absorbing wave energy converters in the Swedish exclusive economic zone. Energy Sci. Eng. 8 (1), 38-49. https://doi.org/10.1002/ese3.507
- 58. ERA-Interim, 2020. Global atmospheric reanalysis from 1 January 1979 to 31 August 2019. https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (accessed 06.01.2022).
- 59. Forsberg, P.L., Lumborg, U., Andersen, T.J., Kroon, A., Ernstsen, V.B., 2019. The relative impact of future storminess versus offshore dredging on suspended sediment concentration in a shallow coastal embayment: Rødsand lagoon, western Baltic Sea. Ocean Dyn. 69 (4), 475-487. https://doi.org/10.1007/s10236-019-01254-6
- 60. Fröhle, P., Schlamkow, C., 2006. High resolution numerical wave simulations compared to wave measurements and wave hindcast methods. In: 2nd Sino-German Joint Symposium on Coastal and Ocean Engineering, October 11-20, 2004, Nanjing, Peoples Republic China. Hohai University, Nanjing, Peoples Republic China, 23-29.
- 61. Gayer, G., Günther, H., Winkel, N., 1995. Wave climatology and extreme value analysis for the Baltic Sea area off the Warnemünde Harbour entrance. Deutsche Hydrographische Zeitschrift 47 (2), 109-130.
- 62. Geyer, B., 2014. High-resolution atmospheric reconstruction for Europe 1948-2012: coastDat2. Earth Syst. Sci. Data 6 (1), 147-164. https://doi.org/10.5194/essd-6-147-2014
- 63. Gic-Grusza, G., Dudkowska, A., 2017. Numerical modeling of hydrodynamics and sediment transport-an integrated approach. Ocean Dyn. 67 (10), 1283-1292. https://doi.org/10.1007/s10236-017-1085-9
- 64. Groll, N., Grabemann, I., Hünicke, B., Meese, M., 2017. Baltic Sea wave conditions under climate change scenarios. Boreal Environ. Res. 22, 1-12. http://www.borenv.net/BER/archive/pdfs/ber22/ber22-001-012-Groll.pdf
- 65. Günther, H., Rosenthal, W., 1995. Model Documentation of HYPAS. Institut für Gewässerphysik. Abteilung GMS. GKSS—Forschungszentrum Geesthacht GmbH, Geesthacht, Germany, 20 pp.
- 66. Günther, H., Rosenthal, W., Weare, T.J., Worthington, B.A., Hasselmann, K., Ewing, J.A., 1979. A hybrid parametrical wave prediction model. J. Geophys. Res.-Oceans 84 (C9), 5727-5738. https://doi.org/10.1029/JC084iC09p05727
- 67. Günther, H., Komen, G.J., Rosenthal, W., 1984. A semi—operational comparison of two parametrical wave prediction models. Deutsche Hydrographische Zeitschrift 37, 89-106.
- 68. Häggmark, L., Ivarsson, K.-I., Gollvik, S., Olofsson, P.-O., 2000. MESAN, an operational mesoscale analysis system. Tellus A 52, 2-20. https://doi.org/10.1034/j.1600-0870.2000.520102.x
- 69. Herkül, K., Torn, K., Suursaar, Ü., Alari, V., Peterson, A., 2016. Variability of benthic communities in relation to hydrodynamic conditions in the north-eastern Baltic Sea. J. Coast. Res. Special Issue 75, 867-871. https://doi.org/10.2112/SI75-174.1
- 70. Hünicke, B., Zorita, E., Soomere, T., Skovgaard Madsen, K., Johansson, M., Suursaar, Ü., 2015. Recent change — sea level and wind waves. In: The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer, Cham, 155-185. https://doi.org/10.1007/978-3-319-16006-1_9
- 71. Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., Haapala, J., 2019. NEMO-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas — research and operational applications. Geosci. Model Dev. 12, 363-386. https://doi.org/10.5194/gmd-12-363-2019
- 72. Iglesias, G., Carballo, R., 2011. Wave resource in El Hierro-an Island towards energy self-sufficiency. Renew. Energy 36 (2), 689-698. https://doi.org/10.1016/j.renene.2010.08.021
- 73. Jakimavičius, D., Kriaučiūnienė, J., Šarauskienė, D., 2018. Assessment of wave climate and energy resources in the Baltic Sea nearshore (Lithuanian territorial water). Oceanologia 60 (2), 207-218. https://doi.org/10.1016/j.oceano.2017.10.004
- 74. Jönsson, A., Broman, B., Rahm, L., 2002. Variations in the Baltic Sea wave fields. Ocean Eng. 30 (1), 107-126. https://doi.org/10.1016/S0029-8018(01)00103-2
- 75. Jönsson, A., Danielsson, Å., Rahm, L., 2005. Bottom type distribution based on wave friction velocity in the Baltic Sea. Cont. Shelf Res. 25, 419-435. https://doi.org/10.1016/S0029-8018(01)00103-2
- 76. Juska, M., Deksnys, R., Guseinoviene, E., 2011. Wave energy technical potential in Lithuania. In: Navickas, A., Sauhats, A., Virbalis, A., Azubalis, M., Galvanauskas, V., Jonaitis, A., Brazauskas, K. (Eds.), 6th International Conference on Electrical and Control Technologies (ECT 2011), May 05-06, 2011, Kaunas, Lithuania. Kaunas University of Technology, Kaunas, Lithuania, 303-308.
- 77. Käärd, A., Valdmann, A., Eelsalu, M., Pindsoo, K., Männikus, R., Soomere, T., 2016. Preventive management of undesired changes in alongshore sediment transport in planning of waterfront infrastructure. In: Brebbia, C.A., Galiano-Garrigos, A. (Eds.), 11th International Conference on Urban Regeneration and Sustainability: Sustainable City 2016. WIT Transactions on Ecology and the Environment, 204. WIT Press, Ashurst, Southampton, UK, 419-430. https://doi.org/10.2495/SC160361
- 78. Kahma, K.K., Calkoen, C.J., 1992. Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr. 22 (12), 1389-1405. https://doi.org/10.1175/1520-0485(1992)022〈1389:Rditog〉2.0.Co;2
- 79. Kahma, K.K., Pettersson, H., 1994. Wave growth in a narrow fetch geometry. The Gobal Atm. Ocean Syst. 2, 253-263.
- 80. Kahma, K., Pettersson, H., Tuomi, L., 2003. Scatter diagram wave statistics from the northern Baltic Sea. MERI — Report Series of the Finnish Institute of Marine Research 49, 15-32.
- 81. Kanarik, H., Tuomi, L., Björkqvist, J.-V., Kärnä, T., 2021. Improving Baltic Sea wave forecasts using modelled Surface currents. Ocean Dyn. 71, 635-653. https://doi.org/10.1007/s10236-021-01455-y
- 82. Karagali, I., Alfredo, P., Badger, M., Hasager, C.B., 2014. Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite. Wind Energy 17, 123-140. https://doi.org/10.1002/we.1565
- 83. Kasiulis, E., Kofoed, J.P., Povilaitis, A., Radzevicius, A., 2017. Spatial distribution of the Baltic Sea near-shore wave power potential along the coast of Klaip˙eda. Lithuania. Energies 10 (12), 2170. https://doi.org/10.3390/en10122170
- 84. Kask, A., Soomere, T., Healy, T., Delpeche, N., 2009. Rapid estimate of sediment loss for “almost equilibrium” beaches. J. Coast. Res. Special Issue 56, 971-975. https://www.jstor.org/stable/25737931
- 85. Kelpšaitė, L., Dailidienė, I., 2011. Influence of wind wave climate change on coastal processes in the eastern Baltic Sea. J. Coast. Res. Special Issue 64, 220-224. https://www.jstor.org/stable/26482165
- 86. Kelpšaitė, L., Parnell, K.E., Soomere, T., 2009. Energy pollution: the relative influence of wind-wave and vessel-wake energy in Tallinn Bay, the Baltic Sea. J. Coast. Res. Special Issue 56, 812-816. https://www.jstor.org/stable/25737691
- 87. Kjellström, E., Bärring, L., Gollvik, S., Hansson, U., Jones, C, Samuelsson, P, Rummukainen, M., Ullerstig, A., Willén, U., Wyser, K., 2005. A 140-year simulation European climate with new version of the Rossby Centre regional atmospheric climate model (RCA3), SMHI, Rep. Meteorol. climatol., 108 pp.
- 88. Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E.M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge, 532 pp.
- 89. Kovaleva, O., Eelsalu, M., Soomere, T., 2017. Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast. Renew. Sustain. Energy Rev. 74, 424-437.https://doi.org/10.1016/j.rser.2017.02.033
- 90. Kriezi, E.E., Broman, B., 2008. Past and future wave climate in the Baltic Sea produced by the SWAN model with forcing from the regional climate model RCA of the Rossby Centre. In: IEEE/OES US/EU-Baltic International Symposium, May 27—29, 2008, Tallinn, Estonia. IEEE OES, 360-366. https://doi.org/10.1109/BALTIC.2008.4625539
- 91. Kudryavtseva, N.A., Soomere, T., 2016. Validation of the multimission altimeter wave height data for the Baltic Sea region. Estonian J. Earth Sci. 65 (3), 161-175. https://doi.org/10.3176/earth.2016.13
- 92. Kudryavtseva, N., Soomere, T., 2017. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth Syst. Dyn. 8 (3), 697-706. https://doi.org/10.5194/esd-8-697-2017
- 93. Kudryavtseva, N., Räämet, A., Soomere, T., 2020. Coastal flooding: Joint probability of extreme water levels and waves along the Baltic Sea coast. J. Coast. Res. Special Issue 95, 1146-1151. https://doi.org/10.2112/SI95-222.1
- 94. Kuhrts, C., Fennel, W., Seifert, T., 2004. Model studies of transport of sedimentary material in the western Baltic. J. Mar. Syst. 52 (1—4), 167-190. https://doi.org/10.1016/j.jmarsys.2004.03.005
- 95. Lass, U., Magaard, L., 1996. Wasserstandsschwankungen und Seegang. In: Rheinheimer, G. (Ed.), Meereskunde der Ostsee. Springer-Verlag, Berlin, Heidelberg, 46-55.
- 96. Lavrenov, I.V., Porubov, A.V., 2006. Three reasons for freak wave generation in the non-uniform current. Eur. J. Mech. B Fluids 25, 574-585. https://doi.org/10.1016/j.euromechflu.2006.02.009
- 97. Lehmann, A., Getzlaff, K., Harlaß, J., 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 46, 185-196. https://doi.org/10.3354/cr00876
- 98. Leijala, U., Björkqvist, J.-V., Johansson, M.M., Pellikka, H., Laakso, L., Kahma, K.K., 2018. Combining probability distributions of sea level variations and wave run-up to evaluate coastal flooding risks. Nat. Hazards Earth Syst. Sci. 18 (10), 2785-2799. https://doi.org/10.5194/nhess-18-2785-2018
- 99. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin, 378 pp. https://doi.org/10.1007/978-3-540-79703-6
- 100. Liang, B.C., Xu, Z.Y., Shi, H.D., Fan, F., 2017. Modelling analysis of the influence of wave farm to nearshore hydrodynamics forces. In: Zhang, X.R., Dincer, I. (Eds.), Energy Solutions to Combat Global Warming. Lecture Notes in Energy 33, 227-245. https://doi.org/10.1007/978-3-319-26950-4_11
- 101. Luhamaa, A., Kimmel, K., Männik, A., Rõõm, R., 2011. High resolution re-analysis for the Baltic Sea region during 1965—2005 period. Clim. Dyn. 36 (3—4), 727-738. https://doi.org/10.1007/s00382-010-0842-y
- 102. Mädler, H., Heise, G., 1973. Hydrographische Bibliographie. Deutsche Hydrografische Zeitschrift 26, 22-48. https://link.springer.com/article/10.1007/BF02232261
- 103. Mäll, M., Nakamura, R., Suursaar, Ü., Shibayama, T., 2020. Pseudoclimate modelling study on projected changes in extreme extra-tropical cyclones, storm waves and surges under CMIP5 multimodel ensemble: Baltic Sea perspective. Nat. Hazards 102 (1),67-99. https://doi.org/10.1007/s11069-020-03911-2
- 104. Meier, H.E.M., 2015. Projected change-Marine physics. In: The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer, Cham, 243-252. https://doi.org/10.1007/978-3-319-16006-1_13
- 105. Mietus, M., von Storch, H., 1997. Reconstruction of the wave climate in the Proper Baltic Basin April 1947-March 1988. GKSS—Forschungszentrum Geesthacht, Geesthacht, 30 GKSS 97/E/28, 1997.
- 106. Morim, J., Hemer, M., Cartwright, N., Strauss, D., Andutta, F., 2018. On the concordance of 21st century wind-wave climate projections. Global Planet. Change. 167, 160-171. https://doi.org/10.1016/j.gloplacha.2018.05.005
- 107. Murawski, J., Woge Nielsen, J., 2013. Applications of an oil drift and fate model for fairway design. In: Soomere, T., Quak, E. (Eds.), Preventive Methods for Coastal Protection: Towards the Use of Ocean Dynamics for Pollution Control. Springer, Heidelberg, 367-415. https://doi.org/10.1007/978-3-319-00440-2_11
- 108. Nikolkina, I., Soomere, T., Räämet, A., 2014. Multidecadal ensemble hindcast of wave fields in the Baltic Sea. 6th IEEE/OES Baltic International Symposium (BALTIC) Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26—29, 2014, Tallinn, Estonia. IEEE OES, 6887854. https://doi.org/10.1109/BALTIC.2014.6887854
- 109. Nilsson, E., Rutgersson, A., Dingwell, A., Björkqvist, J.-V., Pettersson, H., Axell, L., Nyberg, J., Stromstedt, E., 2019. Characterization of wave energy potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone. Energies 12 (5), 793. https://doi.org/10.3390/en12050793
- 110. Orviku, K., Jaagus, J., Kont, A., Ratas, U., Rivis, R., 2003. Increasing activity of coastal processes associated with climate change in Estonia. J. Coast. Res. 19, 364-375. https://www.jstor.org/stable/4299178.
- 111. Orviku, K., Tõnisson, H., Aps, R., Kotta, J., Kotta, I., Martin, G., Suur-saar, Ü., Tamsalu, R., Zalesny, V., 2008. Environmental impact of port construction: Port of Sillamäe case study (Gulf of Finland, Baltic Sea). In: 2008 IEEE/OES US/EU-Baltic International Symposium, May 27—29, 2008. IEEE OES, 350-359. https://doi.org/10.1109/BALTIC.2008.4625538
- 112. Orviku, K., Suursaar, Ü., Tõnisson, H., Kullas, T., Rivis, R., Kont, A., 2009. Coastal changes in Saaremaa Island, Estonia, caused by winter storms in 1999, 2001, 2005 and 2007. J. Coast. Res. Special Issue 56, 1651-1655. https://www.jstor.org/stable/25738070.
- 113. Ostrowski, R., Pruszak, Z., Schonhofer, J., Szmytkiewicz, M., 2016. Groins and submerged breakwaters - new modeling and empirical experience. Oceanol. Hydrobiol. St. 45 (1), 20-34. https://doi.org/10.1515/ohs-2016-0003
- 114. Paplińska, B., 2000. Case study of wave dependent drag coefficient in the Baltic Sea. Meteorologische Zeitschrift 9 (1), 67-72. https://www.schweizerbart.de/content/papers_preview/download/88650
- 115. Paszkiewiz, Cz., 1989. Falowania wiatrowa morza Baltyckiego. Polska Akademia Nauk, Komitet Badan Morza, 124-129 (in Polish). Pettersson, H., Kahma, K.K., Tuomi, L., 2010. Wave directions in a narrow bay. J. Phys. Oceanogr. 40 (1), 155-169. https://doi.org/10.1175/2009JPO4220.1
- 116. Earth System Changes in Marginal Seas/Oceanologia 65 (2023) 117-140
- 117. Piest, J., 1968. Grundlage einer numerischen Seegangsvorher-sage für Schelfmeere. Deutsche Wetterdienst, Seewetteramt. Einzelveröffentlichungen Nr. 61, 49.
- 118. Piest, J., Sellschopp, J., 1971. Vorhersagetabelle für den Seegang in Nord- und Ostsee. OFBw-Bericht, Kiel, 1971-1, 6 pp., 13 tables. Pindsoo, K., Soomere, T., 2015. Contribution of wave set-up into the total water level in the Tallinn area. Proc. Estonian Acad. Sci. 64 (3S), 338-348. https://doi.org/10.3176/proc.2015.3S.03
- 119. Pinto, J.G., Ulbrich, U., Leckebusch, G.C., Spangehl, T., Reyers, M., Zacharias, S., 2007. Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim. Dyn. 29 (2—3), 195-210. https://doi.org/10.1007/s00382-007-0230-4
- 120. Räämet, A., 2010. Spatio-temporal variability of the Baltic Sea wave fields. Tallinn University of Technology. PhD thesis, 147 pp.
- 121. Räämet, A., Soomere, T., 2010. The wave climate and its seasonal variability in the northeastern Baltic Sea. Estonian J. Earth Sci. 59 (1), 100-113. https://doi.org/10.3176/earth.2010.1.08
- 122. Räämet, A., Soomere, T., 2011. Spatial variations in the wave climate change in the Baltic Sea. J. Coast. Res. Special Issue 64, 240-244. https://www.jstor.org/stable/pdf/26482169
- 123. Räämet, A., Soomere, T., 2021. Spatial pattern of quality of historical wave climate reconstructions for the Baltic Sea. Boreal Environ. Res. 26, 29-41. http://www.borenv.net/BER/archive/pdfs/ber26/ber26-029-041.pdf
- 124. Räämet, A., Suursaar, Ü., Kullas, T., Soomere, T., 2009. Reconsidering uncertainties of wave conditions in the coastal areas of the northern Baltic Sea. J. Coast. Res. Special Issue 56, 257-261. https://www.jstor.org/stable/25737577
- 125. Raudsepp, U., Laanemets, J., Haran, G., Alari, V., Pavelson, J., Kõuts, T., 2011. Flow, waves and water exchange in the Suur Strait, Gulf of Riga, in 2008. Oceanologia 53 (1), 35-56. https://doi.org/10.5697/oc.53-1.035
- 126. Rikka, S., Uiboupin, R., Alari, V., 2014. Estimation of wave field parameters from TerraSAR-X imagery in the Baltic Sea. 6th IEEE/OES Baltic International Symposium (BALTIC) Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26-29, 2014, Tallinn, Estonia. IEEE OES PhD thesis, IEEE OES, 6887849. https://doi.org/10.1109/BALTIC.2014.6887849
- 127. Rikka, S., Uiboupin, R., Alari, V., 2017. Applicability of SAR-based wave retrieval for wind-wave interaction analysis in the fetch limited Baltic. Int. J. Remote Sens. 38 (3), 906-922. https://doi.org/10.1080/01431161.2016.1271472
- 128. Rikka, S., Pleskachevsky, A., Jacobsen, S., Alari, V., Uiboupin, R., 2018. Meteo-marine parameters from Sentinel-1 SAR imagery: Towards near real-time services for the Baltic Sea. Remote Sens. 10 (5), 757. https://doi.org/10.3390/rs10050757
- 129. Rosenthal, W., 1986. Wind waves and swell. In: Sündermann, J. (Ed.), Oceanography, vol. 3C. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology —New Series. Springer, 17-36.
- 130. Różyński, G., 2010. Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impacts. Ocean Eng. 37 (2—3), 186-199. https://doi.org/10.1016/j.oceaneng.2009.11.008
- 131. Rzheplinsky, G.V., 1965. Wave and Wind Atlas for the Baltic Sea. Tallinn. In: Wave and Wind Atlas for the Baltic Sea. Tallinn, 88 pp. (in Russian).
- 132. Rzheplinsky, G.V., Brekhovskikh, Yu.P., 1967. Wave Atlas for the Gulf of Finland. In: Wave Atlas for the Gulf of Finland. Gidrometeoizdat, Leningrad, 48 pp. (in Russian).
- 133. Rutgersson, A., Jaagus, J., Schenk, F., Stendel, M., 2014. Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years. Clim. Res. 61 (2), 177-190. https://doi.org/10.3354/cr01244
- 134. Rutgersson, A., Jaagus, J., Schenk, F., Stendel, M., Bärring, L., Briede, A., Claremar, B., Hanssen-Bauer, I., Holopainen, J., Moberg, A., Nordli, Ø., Rimkus, E., Wibig, J., 2015. Recent Change—Atmosphere. In: The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer, Cham, 69-97. https://doi.org/10.1007/978-3-319-16006-1_4
- 135. Ryabchuk, D., Leont’yev, I., Sergeev, A., Nesterova, E., Sukhacheva, L., Zhamoida, V., 2011. The morphology of sand spits and the genesis of long—shore sand waves on the coast of the eastern Gulf of Finland. Baltica 24 (1), 13-24. Schmager, W.G., 1979. Atlas zur Ermittlung der Wellenhöhe in der südlichen Ostsee. In: Atlas zur Ermittlung der Wellenhöhe in der südlichen Ostsee. Seehydrographischer Dienst der DDR. XIV, Rostock, 115 pp. (in German).
- 136. Schmager, G., Fröhle, P., Schrader, D., Weisse, R., Müller—Navarra, S., 2008. Sea state, tides. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea 1952—2005. Wiley, Hoboken, NJ, 143-198.
- 137. Schlamkow, C., Fröhle, P., 2009. Entwicklung von Methoden zur Bestimmung maßgebender hydrodynamischer Bemessungsparameter für üstenschutzanlagen an der Ostsee. Die Küste 75, 207-229.
- 138. Sergeev, A., Ryabchuk, D., Zhamoida, V., Leont’yev, I., Kolesov, A., Kovaleva, O., Orviku, K., 2018. Coastal dynamics of the eastern Gulf of Finland, the Baltic Sea: toward a quantitative assessment. Baltica 31 (1), 49-62. https://doi.org/10.5200/baltica.2018.31.05
- 139. Siewert, M., Schlamkow, C., Saathoff, F., 2015. Spatial analyses of 52 years of modelled sea state data for the Western Baltic Sea and their potential applicability for offshore and nearshore construction purposes. Ocean Eng. 96, 284-294. https://doi.org/10.1016/j.oceaneng.2014.12.029
- 140. Szmytkiewicz, P., Szmytkiewicz, M., Uscinowicz, G., 2021. Lithodynamic processes along the seashore in the area of planned nuclear power plant construction: A case study on. Lubiatowo at Poland. Energies 14 (6), 1636. https://doi.org/10.3390/en14061636
- 141. Sokolov, A., Chubarenko, B., 2018. Numerical simulation of dynamics of sediments disposed in the marine coastal zone of the south-eastern Baltic. Baltica 31 (1), 13-23. https://doi.org/10.5200/baltica.2018.31.02
- 142. Sokolov, A.N., Chubarenko, B.V., 2020. Temporal variability of the wind wave parameters in the Baltic Sea in 1979—2018 based on the numerical modeling results. Phys. Oceanogr. 27 (4), 352-363. https://doi.org/10.22449/1573-160X-2020-4-352-363
- 143. Soomere, T., 2001. Wave regimes and anomalies off north-western Saaremaa Island. Proc. Estonian Acad. Sci. Eng. 7 (2), 157-173. http://vana.kirj.ee/public/va_te/t50-2-6.pdf
- 144. Soomere, T., 2003. Anisotropy of wind and wave regimes in the Baltic Proper. J. Sea Res. 49, 305-316. https://doi.org/10.1016/S1385-1101(03)00034-0
- 145. Soomere, T., 2005. Wind wave statistics in Tallinn Bay. Boreal Environ. Res. 10 (2), 103-118. http://www.borenv.net/BER/archive/pdfs/ber10/ber10-103.pdf
- 146. Soomere, T., 2008. Extremes and decadal variations of the northern Baltic Sea wave conditions. In: Pelinovsky, E., Kharif, C. (Eds.), Extreme Ocean Waves. Springer, 139-157. https://doi.org/10.1007/978-1-4020-8314-3_8
- 147. Soomere, T., 2010. Rogue waves in shallow water. Eur. Phys. J. Special Topics 185, 81-96. https://doi.org/10.1140/epjst/e2010-01240-1
- 148. Soomere, T., 2016. Extremes and decadal variations in the Baltic Sea wave conditions. In: Pelinovsky, E., Kharif, C. (Eds.), Extreme Ocean Waves. Springer, 107-140. https://doi.org/10.1007/978-3-319-21575-4_7
- 149. Soomere, T., 2013. Extending the observed Baltic Sea wave climate back to the 1940s. J. Coast. Res. Special Issue 65. https://doi.org/10.2112/SI65-333.1
- 150. Soomere, T., Healy, T., 2011. On the dynamics of “almost equilibrium” beaches in semi-sheltered bays along the southern coast of the Gulf of Finland. In: Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin. Central and Eastern European Development Studies, Part 5. Springer, Heidelberg, Dordrecht, London, New York, 255-279. https://doi.org/10.1007/978-3-642-17220-5_13
- 151. Soomere, T., Kurkina, O., 2011. Statistics of extreme wave conditions in the south-western Baltic Sea (Статистика экстремального волнения в юго-западной части Балтийского Моря). Fundamental and Applied Hydrophysics (Фундаментальная и прикладная гидрофизика), 4 (4) 43-57 (in Russian).
- 152. Soomere, T., Räämet, A., 2011a. Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7 (1), 141-150. https://doi.org/10.5194/os-7-141-2011
- 153. Soomere, T., Räämet, A., 2011b. Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia 53 (1), 335-371. https://doi.org/10.5697/oc.53-1-TI.335
- 154. Soomere, T., Räämet, A., 2014. Decadal changes in the Baltic Sea wave heights. J. Mar. Syst. 129, 86-95. https://doi.org/10.1016/j.jmarsys.2013.03.009
- 155. Soomere, T., Eelsalu, M., 2014. On the wave energy potential along the eastern Baltic Sea coast. Renew. Energ. 71, 221-233. https://doi.org/10.1016/j.renene.2014.05.025
- 156. Soomere, T., Viška, M., 2014. Simulated sediment transport along the eastern coast of the Baltic Sea. J. Mar. Syst. 129, 96-105. https://doi.org/10.1016/j.jmarsys.2013.02.001
- 157. Soomere, T., Rannat, K., Elken, J., Myrberg, K., 2003. Natural and anthropogenic wave forcing in the Tallinn Bay, Baltic Sea. In: Brebbia, C.A., Almorza, D., López-Aguayo, F. (Eds.), Coastal Engineering 2003. Coastal Engineering VI: 6th International Conference on Computer Modelling and Experimental Measurements of Seas and Coastal Regions, Cadiz, Spain. WIT Transactions on The Built Environment 70. WIT Press, Southampton, Boston, 273-282. https://doi.org/10.2495/CE030271
- 158. Soomere, T., Behrens, A., Tuomi, L., Nielsen, J.W., 2008a. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci. 8 (1), 37-46. https://doi.org/10.5194/nhess-8-37-2008
- 159. Soomere, T., Myrberg, K., Leppäranta, M., Nekrasov, A., 2008b. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997—2007. Oceanologia 50 (3), 287-362.
- 160. Soomere, T., Zaitseva-Pärnaste, I., Räämet, A., Kurennoy, D., 2010. Spatio-temporal variations of wave fields in the Gulf of Finland. Fundamental and Applied Hydrophysics (Фундаментальная и прикладная гидрофизикa) 4 (10), 90-101 (in Russian).
- 161. Soomere, T., Zaitseva-Pärnaste, I., Räämet, A., 2011. Variations in wave conditions in Estonian coastal waters from weekly to decadal scales. Boreal Environ. Res. 16 (Suppl A), 175-190. http://www.borenv.net/BER/archive/pdfs/ber16/ber16A-175.pdf
- 162. Soomere, T., Weisse, R., Behrens, A., 2012. Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci 8 (2), 287-300. https://doi.org/10.5194/os-8-287-2012
- 163. Soomere, T., Pindsoo, K., Bishop, S.R., Käärd, A., Valdmann, A., 2013. Mapping wave set-up near a complex geometric urban coastline. Nat. Hazards Earth Syst. Sci. 13, 3049-3061. https://doi.org/10.5194/nhess-13-3049-2013
- 164. Soomere, T., Bishop, S.R., Viška, M., Räämet, A., 2015. An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim. Res. 62, 163-171. https://doi.org/10.3354/cr01269
- 165. Soomere, R., Männikus, R., Pindsoo, K., Kudryavtseva, N., Eelsalu, M., 2017a. Modification of closure depths by synchronisation of severe seas and high water levels. Geo-Mar. Lett. 37 (1), 35-46. https://doi.org/10.1007/s00367-16-471-5
- 166. Soomere, T., Viška, M., Pindsoo, K., 2017b. Retrieving the signal of climate change from numerically simulated sediment transport along the eastern Baltic Sea coast. In: Harff, J., Furma´nczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East. Past and Future Projection. Coastal Research Library 19. Springer, Cham, 327-361. https://doi.org/10.1007/978-3-319-49894-2_15
- 167. Soomere, T., Pindsoo, K., Kudryavtseva, N., Eelsalu, M., 2020. Variability of distributions of wave set-up heights along a shoreline with complicated geometry. Ocean Sci. 16, 1047-1065. https://doi.org/10.5194/os-16-1-2020
- 168. Stanev, E.V., Schulz-Stellenfleth, J., Staneva, J., Grayek, S., Grashorn, S., Behrens, A., Koch, W., Pein, J., 2016. Ocean forecasting for the German Bight: from regional to coastal scales. Ocean Sci. 12 (5), 1105-1136. https://doi.org/10.5194/os-12-1105-2016
- 169. Steenberg, C.M., Kriauˇci¯unien˙e, J., 2002. Klaip˙eda Port entrance rehabilitation project. In: Brebbia, C.A., Sciutto, G. (Eds.), Maritime Engineering & Ports III (3rd International Conference on Maritime Engineering and Ports, September 18—20, 2002, Rhodes, Greece). Water Studies Series, 12. Wessex Institute of Technology Press, 203-212.
- 170. Stockdon, H.F., Holman, R.A., Howd, P.A., Sallenger, A.H., 2006. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53, 573-588. https://doi.org/10.1016/j.coastaleng.2005.12.005
- 171. Sundblad, G., Bekkby, T., Isaeus, M., Nikolopoulos, A., 2014. Comparing the ecological relevance of four wave exposure models. Estuar. Coast. Shelf Sci. 140, 7-13. https://doi.org/10.1016/j.ecss.2014.01.008
- 172. Suursaar, Ü., 2010. Waves, currents and sea level variations along the Letipea — Sillamäe coastal section of the southern Gulf of Finland. Oceanologia 52 (3), 391-416. https://doi.org/10.5697/oc.52-3.391
- 173. Suursaar, Ü., 2013. Locally calibrated wave hindcasts in the Estonian coastal sea in 1966—2011. Estonian J. Earth Sci. 62 (1), 42-56. https://doi.org/10.3176/earth.2013.05
- 174. Suursaar, Ü., 2015. Analysis of wave time series in the Estonian coastal sea in 2003—2014. Estonian J. Earth Sci. 64 (4), 289-304. https://doi.org/10.3176/earth.2015.35
- 175. Suursaar, Ü., Kullas, T., 2009a. Decadal changes in wave climate and sea level regime: the main causes of the recent intensification of coastal geomorphic processes along the coasts of Western Estonia? In: Brebbia, C.A., Benassai, G., Rodriguez, G.R. (Eds.), Coastal Processes (1st International Conference on Physical Coastal Processes, Management and Engineering, September 14—16, 2009, Malta). WIT Transactions on Ecology and the Environment 126, 105-116. https://doi.org/10.2495/CP090101
- 176. Suursaar, Ü., Kullas, T., 2009b. Decadal variations in wave heights off Cape Kelba, Saaremaa Island, and their relationships with changes in wind climate. Oceanologia 51 (1), 39-61. https://doi.org/10.5697/oc.51-1.039
- 177. Suursaar, Ü., Tõnisson, H., 2017. Storminess-related rhythmic ridge patterns on the coasts of Estonia. Estonian J. Earth Sci. 66 (4), 220-237. https://doi.org/10.3176/earth.2017.16
- 178. Suursaar, Ü., Kullas, T., Otsmann, M., 2003. Modelling of flows, sea level variations and bottom stresses in the coastal zone of West Estonia. In: Brebbia, C.A., Almorza, D., LopezAguayo, F. (Eds.), Coastal Engineering VI: 6th International Conference on Computer Modelling and Experimental Measurements of Seas and Coastal Regions, Cadiz, Spain. WIT Transactions on The Built Environment 9. Wessex Institute of Technology, 43-52. https://doi.org/10.2495/CE030051
- 179. Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J., Merilain, M., 2006. Cyclone Gudrun in January 2005 and modeling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environ. Res. 11 (2), 143-159. http://www.borenv.net/BER/archive/pdfs/ber11/ber11-143.pdf
- 180. Suursaar, Ü., Kutser, T., Aps, R., Kullas, T., Vahtmäe, E., Metsamaa, L., Otsmann, M., 2009. Hydrodynamically induced or modified patterns derived from satellite images in the coastal waters of Estonia. J. Coast. Res. Special Issue 56, 1602-1606. https://www.jstor.org/stable/25738060
- 181. Suursaar, Ü, Kullas, T., Szava-Kovats, R., 2010. Wind and wave storms, storm surges and sea level rise along the Estonian coast of the Baltic Sea. In: Brebbia, C.A., Jovanovic, N., Tiezzi, E. (Eds.), Management of Natural Resources, Sustainable Development and Ecological Hazards II: 2nd International Conference on Management of Natural Resources, Sustainable Development and Ecological Hazards, 2009, Western Cape, South Africa. WIT Trans. Ecol. Environ. 127, 149-159. https://doi.org/10.2495/RAV090131
- 182. Suursaar, Ü., Kullas, T., Kovtun, A., Torn, K., Aps, R., 2011a. Climate change induced decadal variations in hydrodynamic conditions and their influence on benthic habitats of the Estonian coastal sea. In: Brebbia, C.A., Zubir, S.S. (Eds.), Management of Natural Resources, Sustainable Development and Ecological Hazards III: 3rd International Conference on Management of Natural Resources, Sustainable Development and Ecological Hazards. WIT Trans. Ecol. Environ. 148, 427-438. https://doi.org/10.2495/RAV110391
- 183. Suursaar, Ü., Szava-Kovats, R., Tõnisson, H., 2011b. Wave climate and coastal processes in the Osmussaar Neugrund region, Baltic Sea. In: Benassai, G., Brebbia, C.A., Rodriguez, G. (Eds.), Coastal Processes II. 2nd International Conference on Physical Coastal Processes, Management and Engineering, April 27—29, 2011, Naples, Italy. Wessex Institute of Technology Trans. Ecol. Environ. 149, 99-110. https://doi.org/10.2495/CP110091
- 184. Suursaar, Ü., Kullas, T., Aps, R., 2012a. Currents and waves in the northern Gulf of Riga: measurement and long-term hindcast. Oceanologia 54 (3), 421-447. https://doi.org/10.5697/oc.54-3.421
- 185. Suursaar, Ü., Aps, R., Kullas, T., Oganjan, K., 2012b. Influence of large scale changes in wind climate on sea level, wave conditions and turbidity in the coastal waters of Estonia, Baltic Sea. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 22—27, 2012. Munich, Germany. IEEE, 2657-2660. https://doi.org/10.1109/IGARSS.2012.6350382
- 186. Suursaar, Ü., Tõnisson, H., Kont, A., Orviku, K., 2013. Analysis of relationships between near-shore hydrodynamics and sediment movement on Osmussaar Island, western Estonia. Bull. Geolog. Soc. Finland 85, 35-52. https://doi.org/10.17741/bgsf/85.1.003
- 187. Suursaar, Ü., Alari, V., Tõnisson, H., 2014. Multi-scale analysis of wave conditions and coastal changes in the north-eastern Baltic Sea. J. Coast. Res. Special Issue 70, 223-228. https://doi.org/10.2112/SI70-038.1
- 188. Suursaar, Ü., Jaagus, J., Tõnisson, H., 2015a. How to quantify long-term changes in coastal sea storminess? Estuar. Coast. Shelf Sci. 156, 31-41. https://doi.org/10.1016/j.ecss.2014.08.001
- 189. Suursaar, Ü., Raid, T., Vetemaa, M., Saat, T., 2015b. Storm-generated shallow sea turbidity and its influence on spawning and nursery grounds of littoral fish. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26—31, Milan, Italy. IEEE, 2295-2298. https://ieeexplore.ieee.org/document/7326266
- 190. Suursaar, Ü., Tõnisson, H., Alari, V., Raudsepp, U., Rästas, H., Anderson, A., 2016a. Projected changes in wave conditions in the Baltic Sea by the end of 21st century and the corresponding shoreline changes. J. Coast. Res. Special Issue 75, 1012-1016. https://doi.org/10.2112/SI75-203.1
- 191. Suursaar, Ü., Tõnisson, H., Kont, A., 2016b. Assessing storm-related geomorphic shoreline changes based on GPS surveys, old maps and aerial photographs. In: 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 10—15, Beijing, China, 5382-5385. https://doi.org/10.1109/IGARSS.2016.7730402
- 192. Suursaar, Ü., Kall, T., Steffen, H., Tõnisson, H., 2019. Cyclicity in ridge patterns on the prograding coasts of Estonia. Boreas 48 (4), 913-928. https://doi.org/10.1111/bor.12398
- 193. Sverdrup, H.U., Munk, W.H., 1947. Wind, sea and swell: Theory of relations for forecasting. Publication 601. Hydrographic Office, U.S. Navy, 50. Tauber, F., Emeis, K.C., 2005. Sediment mobility in the Pomeranian Bight (Baltic Sea): a case study based on sidescan-sonar images and hydrodynamic modeling. Geo-Mar. Lett. 25 (4), 221-229. https://doi.org/10.1007/s00367-004-0207-9
- 194. Tõnisson, H., Orviku, K., Jaagus, J., Suursaar, Ü., Kont, A., Rivis, R., 2008. Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005. J. Coast. Res. 24 (3), 602-614. https://doi.org/10.2112/06-0631.1
- 195. Tõnisson, H., Suursaar, Ü., Orviku, K., Jaagus, J., Kont, A., Willis, D.A., Rivis, R., 2011. Changes in coastal processes in relation to changes in large-scale atmospheric circulation, wave parameters and sea levels in Estonia. J. Coast. Res. Special Issue 64, 701-705.
- 196. Tõnisson, H., Suursaar, Ü., Kont, A., 2012. Maps, aerial photographs, orthophotos and GPS data as a source of information to determine shoreline changes, coastal geomorphic processes and their relation to hydrodynamic conditions on Osmussaar Island, the Baltic Sea. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 22—27, 2012, Munich, Germany. IEEE, 2657-2660. https://doi.org/10.1109/IGARSS.2012.6350382
- 197. Tõnisson, H., Suursaar, Ü., Rivis, R., Kont, A., Orviku, K., 2013. Observation and analysis of coastal changes in the West Estonian Archipelago caused by storm Ulli (Emil) in January 2012. J. Coast. Res. Special Issue 65, 832-837. https://doi.org/10.2112/SI65-141.1
- 198. Tõnisson, H., Suursaar, Ü., Kont, A., Orviku, K., Rivis, R., Szava-Kovats, R., Vilumaa, K., Aarna, T., Eelsalu, M., Pindsoo, K., Palginõmm, V., Ratas, U., 2014. Field experiments with different fractions of painted sediments to study material transport in three coastal sites in Estonia. J. Coast. Res. Special Issue 70, 229-234. https://doi.org/10.2112/SI70-039.1
- 199. Tõnisson, H., Suursaar, Ü., Alari, V., Muru, M., Rivis, R., Kont, A., Viitak, M., 2016. Measurement and model simulations of hydrodynamic parameters, observations of coastal changes and experiments with indicator sediments to analyse the impact of storm St. Jude in October, 2013. J. Coast. Res. Special Issue 75, 1257-1261. https://doi.org/10.2112/SI75-252.1
- 200. Tõnisson, H., Suursaar, Ü., Kont, A., Muru, M., Rivis, R., Rosentau, A., Tamura, T., Vilumaa, K., 2018. Rhythmic patterns of coastal formations as signs of past climate fluctuations on uplifting coasts of Estonia, the Baltic Sea. J. Coast. Res. Special Issue 85, 611-615. https://doi.org/10.2112/SI85-123.1
- 201. Tolman, H.L., Balasubramaniyan, B., Burroughs, L.D., Chalikov, D.V., Chao, Y.Y., Chen, H.S., Gerald, V.M., 2002. Development and implementation of wind-generated ocean surface wave models at NCEP. Weather Forecast 17 (2),311-333. https://doi.org/10.1175/1520-0434(2002)017〈0311:DAIOWG〉2.0.CO;2
- 202. Tuomi, L., Sarkanen, A., 2008. Wave forecasts for the Baltic Sea using ECMWF wind fields as forcing data. 2008 IEEE/OES US/EU-Baltic International Symposium, May 27—29, 2008, Tallinn, Estonia. IEEE OES. https://doi.org/10.1109/BALTIC.2008.4625529
- 203. Tuomi, L., Björkqvist, J.-V., 2014. Wave forecasting in coastal archipelagos. 6th IEEE/OES Baltic International Symposium (BALTIC) Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26—29, 2014, Tallinn, Estonia. IEEEOES. https://doi.org/10.1109/BALTIC.2014.6887855
- 204. Tuomi, L., Pettersson, H., Kahma, K., 1999. Preliminary results from the WAM wave model forced by the mesoscale EUR-HIRLAM atmospheric model. MERI — Report series of the Finnish Institute of Marine Research 40, 19-23.
- 205. Tuomi, L., Kahma, K.K., Pettersson, H., 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res. 16 (6), 451-472. http://www.borenv.net/BER/archive/pdfs/ber16/ber16-451.pdf
- 206. Tuomi, L., Kahma, K.K., Fortelius, C., 2012. Modelling fetch-limited wave growth from an irregular shoreline. J. Mar. Syst. 105, 96-105. https://doi.org/10.1016/j.jmarsys.2012.06.004
- 207. Tuomi, L., Pettersson, H., Fortelius, C., Tikka, K., Björkqvist, J.-V., Kahma, K.K., 2014. Wave modelling in archipelagos. Coast. Eng. 83, 205-220. https://doi.org/10.1016/j.coastaleng.2013.10.011
- 208. Tuomi, L., Vähö-Piikkio, O., Alenius, P., Björkqvist, J.-V., Kahma, K.K., 2018. Surface Stokes drift in the Baltic Sea. Ocean Dyn. 68 (1), 17-33. https://doi.org/10.1007/s10236-017-1115-7
- 209. Tuomi, L., Kanarik, H., Björkqvist, J.-V., Marjamaa, R., Vainio, J., Hordoir, R., Höglund, A., Kahma, K.K., 2019. Impact of ice data quality and treatment on wave hindcast statistics in seasonally ice-covered seas. Front. Earth Sci. 7, 166. https://doi.org/10.3389/feart.2019.00166
- 210. Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J., Jones, C., Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N., Ødegaard, V., Rodriguez, E., Rummukainen, M., Rõõm, R., Sattler, K., Sass, B., Savijärvi, H., Schreur, B., Sigg, R., The, H., Tijm, A., 2002. HIRLAM-5. Scientific Documentation. Swedish Meteorological and Hydrological Institute, Norrköping, 147 pp.
- 211. Urbanski, J.A., Grusza, G., Chlebus, N., Kryla, L., 2008. A GIS-based WFD oriented typology of shallow micro-tidal soft bottom using wave exposure and turbidity mapping. Estuar. Coast. Shelf Sci. 78 (1), 27-37. https://doi.org/10.1016/j.ecss.2007.11.025
- 212. USACE [United States Army Corps of Engineers], 1984. Shore protection manual. Dept. of the Army, Waterways Experiment Station. Corps of Engineers, Coastal Engineering Research Center. http://resolver.tudelft.nl/uuid:98791127-e7ae-40a1-b850-67d575fa1289 (accessed 06.01.2022).
- 213. Viitak, M., Maljutenko, I., Alari, V., Suursaar, Ü., Rikka, S., Lagemaa, P., 2016. The impact of surface currents and sea level on the wave field evolution during St. Jude storm in the eastern Baltic Sea. Oceanologia 58 (3), 176-186. https://doi.org/10.1016/j.oceano.2016.01.004
- 214. Viška, M., Soomere, T., 2013. Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26 (2), 145-156. https://doi.org/10.5200/baltica.2013.26.15
- 215. Weisse, R., Feser, F., 2003. Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmosphere models. Coast. Eng. 48 (4), 211-225. https://doi.org/10.1016/S0378-3839(03)00027-9
- 216. Weisse, R., von Storch, H., 2010. Marine Climate and Climate Change. Storms, Wind Waves and Storm Surges. Springer, Berlin, Heidelberg, New York, 219 pp. https://doi.org/10.1007/978-3-540-68491-6
- 217. Weisse, R., Günther, H., Callies, U., von Storch, H., Feser, F., Woth, K., Grabemann, I., Chrastansky, A., Plüss, A. , 2008. The coastDat data set and its potential for coastal and offshore applications. In: Zanke, U., Roland, A., Saenger, N., Wiesemann, J.U., Dahlem, G. (Eds.), Proceedings of the Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, August 24-30, 2008. Technical University Darmstadt, Germany, 335-344.
- 218. Westerlund, A., Tuomi, L., 2016. Vertical temperature dynamics in the Northern Baltic Sea based on 3D modelling and data from shallow-water Argo floats. J. Mar. Syst. 158, 34-44. https://doi.org/10.1016/j.jmarsys.2016.01.006
- 219. White, B.S., Fornberg, B., 1998. On the chance of freak waves at sea. J. Fluid Mech. 355, 113-138. https://doi.org/10.1017/S0022112097007751
- 220. Wickstrom, S., Jonassen, M.O., Vihma, T., Uotila, P., 2020. Trends in cyclones in the high-latitude North Atlantic during 1979—2016.
- 221. Quart. J. Roy. Meteorol. Soc. 146 (727), 762-779. https://doi.org/10.1002/qj.3707
- 222. Wiese, A., Staneva, J., Schulz-Stellenfleth, J., Behrens, A., Fenoglio-Marc, L., Bidlot, J.R., 2018. Synergy of wind wave model simulations and satellite observations during extreme events. Ocean Sci. 14 (6), 1503-1521. https://doi.org/10.5194/os- 14- 1503- 2018
- 223. Wrang, L., Katsidoniotaki, E., Nilsson, E., Rutgersson, A., Ryden, J., Goteman, M., 2021. Comparative analysis of environmental contour approaches to estimating extreme waves for offshore installations for the Baltic Sea and the North Sea. J. Mar. Sci. Eng. 9 (1), 96. https://doi.org/10.3390/jmse9010096
- 224. Xu, Z.-S., Dreier, N., Chen, Y.-P., Fröhle, P., Xie, D.-M., 2016. On the long-term changes of extreme wave heights at the German Baltic Sea Coast. J. Coast. Res. Special Issue 75, 962-966. https://doi.org/10.2112/SI75-193.1
- 225. Zaitseva-Pärnaste, I., Suursaar, Ü., Kullas, T., Lapimaa, S., Soomere, T., 2009. Seasonal and long-term variations of wave conditions in the northern Baltic Sea. J. Coast. Res. Special Issue 56, 277-281. https://www.jstor.org/stable/25737581
- 226. Zaslavskii, M.M., Zalesny, V.B., Kabatchenko, I.M., Tamsalu, R., 2006. On the self-adjusted description of the atmospheric boundary layer, wind waves, and sea currents. Oceanology 46 (2), 159-169. https://doi.org/10.1134/S0001437006020020
- 227. Zhang, W.Y., Harff, J., Schneider, R., Wu, C.Y., 2010. Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dyn. 60 (5), 1085-1114. https://doi.org/10.1007/s10236-010-0311-5
- 228. Zhang, W.Y., Schneider, R., Kolb, J., Teichmann, T., Dudzińska-Nowak, J., Harff, J., Hanebuth, T.J.J., 2015. Land-sea interaction and morphogenesis of coastal foredunes — A modeling case study from the southern Baltic Sea coast. Coast. Eng. 99, 148-166. https://doi.org/10.1016/j.coastaleng.2015.03.005
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c6377479-782c-4405-bbc4-4ec49caa637e