Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 5 | 193--207
Tytuł artykułu

Different Tillage and Residue Management Practices Affect Soil Biological Activities and Microbial Culturable Diversity in Rice-Wheat Cropping System Under Reclaimed Sodic Soils

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Agricultural management practices alter soil characteristics and influence soil biological properties. Hence, a field trial was carried out to assess the 14-year long-term impact of tillage and residue management practices on soil biological activities and microbial population in a rice-wheat cropping system in two depths viz., 0–15 and 15–30 cm. Soil organic carbon levels differed significantly (p>0.05) across various treatments. Microbial biomass carbon, microbial quotient, and soil enzymatic activities were significantly greater (10–82%) in crop residue incorporation/retention treatments. Zero tillage with residue retention (ZT+R) had the greatest bacterial, actinomycetes, and fungi population, followed by reduced tillage with residue incorporation (RT+R). The ZT+R treatment had the greatest value of K-strategist and r-strategist, and was equivalent to RT+R across both soil depths. When compared to conventional tillage (CT), zero tillage (ZT) increased wheat yield by 9%. However, compared to CT, rice and rice-wheat systems had lower grain yields, whereas crop residue increased wheat and rice-wheat system yields by 10% and 6%, respectively. The findings of this long-term study show that residue management and tillage practices can enhance soil biological attributes while also supporting microbial diversity.
Wydawca

Rocznik
Strony
193--207
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • ICAR – Central Soil Salinity Research Institute, Karnal 132 001, Haryana, India, AK.Rai@icar.gov.in
  • ICAR – Central Soil Salinity Research Institute, Karnal 132 001, Haryana, India
  • ICAR – Central Soil Salinity Research Institute, Karnal 132 001, Haryana, India, kp.agron@gmail.com
autor
  • ICAR – Central Soil Salinity Research Institute, Karnal 132 001, Haryana, India, kamlesh.ugf@gmail.com
  • ICAR – Central Soil Salinity Research Institute, Karnal 132 001, Haryana, India, rk.yadav@icar.gov.in
Bibliografia
  • 1. Basak N., Barman A., Sundha P., Rai A.K. 2020. Recent trends in soil salinity appraisal and management. Soil analysis: recent trends and applications, 143–161.
  • 2. Behera U.K., Sharma A.R., Pandey H.N. 2007. Sustaining productivity of wheat–soybean cropping system through integrated nutrient management practices on the Vertisols of central India. Plant and Soil, 297, 185–199. https://doi.org/10.1007/s11104-007-9332-3
  • 3. Bera T., Sharma S., Thind H.S., Sidhu H.S., Jat M.L. 2018. Changes in soil biochemical indicators at different wheat growth stages under conservation-based sustainable intensification of rice-wheat system. Journal of Integrative Agriculture, 17, 1871–1880. https://doi.org/10.1016/S2095-3119(17)61835-5
  • 4. Bhattacharyya R., Pandey S.C., Bisht J.K., Bhatt J.C., Gupta H.S., Tuti M.D., Mahanta D., Mina B.L., Singh R.D., Chandra S., Srivastva A.K. 2013. Tillage and irrigation effects on soil aggregation and carbon pools in the Indian Sub-Himalayas. Agronomy Journal, 105, 101–112. https://doi.org/10.2134/agronj2012.0223
  • 5. Blagodatskaya E., Blagodatskaya S., Dorodnikov M., Kuzyakov Y. 2010. Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Global Change Biology, 16, 836–848. https://doi org/10.1111/j.1365-2486.2009.02006.x
  • 6. Bobuská L., Fazekašová D., Angelovičová L. 2015. Vertical Profiles of Soil Properties and Microbial Activities in Peatbog Soils in Slovakia. Environmental Processes, 2, 411–418. https://doi.org/10.1007/s40710-015-0073-7
  • 7. Busari M.A., Kukal S.S., Kaur A. 2015. Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research, 3, 119–129. https://doi.org/10.1016/j.iswcr.2015.05.002
  • 8. Casida L.E., Klein D.A., Santoro T. 1964. Soil dehydrogenase activity. Soil Science, 98(6), 371–376
  • 9. Chandra P., Dhuli P., Verma P., Singh A., Choudhary M., Prajapat K., Rai A.K., Yadav R.K. 2020. Culturable microbial diversity in the rhizosphere of different biotypes under variable salinity. Tropical Ecology, 61, 291–300. https://doi.org/10.1007/s42965-020-00089-3
  • 10. Chandra P., Gill S.C., Prajapat K., Barman A., Chhokar R.S., Tripathi S.C., Singh G., Kumar R., Rai A.K., Khobra R., Jasrotia P. 2022a. Response of wheat cultivars to organic and inorganic nutrition: Effect on the yield and soil biological properties. Sustainability, 14(15), 9578.
  • 11. Chandra P., Khippal A.K., Prajapat K., Barman A., Singh G., Rai A.K., Ahlawat O.P., Verma R.P.S., Kumari K., Singh G. 2023. Influence of tillage and residue management practices on productivity, sustainability, and soil biological properties of rice-barley cropping systems in indo-gangetic plain of India. Frontiers in Microbiology, 14, p1130397. https://doi.org/10.3389/fmicb.2023.1130397
  • 12. Chandra P., Rai A.K., Sundha P., Basak N., Kaur H. 2022. Rhizospheric soil–plant-microbial interactions for abiotic stress mitigation and enhancing crop performance. Soil Health and Environmental Sustainability: Application of Geospatial Technology, 593–614.
  • 13. Chandra P., Singh A., Prajapat K., Rai A.K., Yadav R.K. 2022. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environmental and Experimental Botany, 201, 104982. https://doi.org/10.1016/j.envexpbot.2022.104982
  • 14. Chauhan B.S., Mahajan G., Sardana V., Timsina J., Jat M.L. 2012. Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: Problems, opportunities, and strategies. Advances in Agronomy, 117, 315–369. https://doi.org/10.1016/B978-0-12-394278-4.00007-6
  • 15. Dhanda S., Yadav A., Yadav D.B., Chauhan B.S. 2022. Emerging issues and potential opportunities in the rice–wheat cropping system of North-Western India. Frontiers in Plant Science, 13, 832683.
  • 16. Duanyuan H., Zhou T., He Z., Peng Y., Lei J., Dong J., Wu X., Wang J., Yan W. 2023. Effects of straw mulching on soil properties and enzyme activities of camellia oleifera–cassia intercropping agroforestry systems, plants, 12(17), 3046. https://doi.org/10.3390/plants12173046
  • 17. Dutta A., Bhattacharyya R., Chaudhary V.P., Sharma C., Nath C.P., Kumar S.N., Parmar B. 2022. Impact of long-term residue burning versus retention on soil organic carbon sequestration under a rice-wheat cropping system. Soil and Tillage Research, 221, 105421. https://doi.org/10.1016/j.still.2022.105421
  • 18. Fagodiya R.K., Singh A., Singh R., Rani S., Kumar S., Rai A.K., Sheoran P., Chandra P., Yadav R.K., Sharma P.C., Biswas A.K. 2023. The food-energywater-carbon nexus of the rice-wheat production system in the western Indo-Gangetic Plain of India: An impact of irrigation system, conservational tillage and residue management. Science of The Total Environment, 860, 160428.
  • 19. Frąc M., Hannula S.E., Bełka M., Jędryczka M. 2018. Fungal biodiversity and their role in soil health. Frontiers in microbiology, 9, 707.
  • 20. Ghimire R., Lamichhane S., Acharya B.S., Bista P., Sainju U.M. 2017. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. Journal of integrative agriculture, 16(1), 1–15. https://doi.org/10.1016/S2095-3119(16)61337-0
  • 21. Govaerts B., Mezzalama M., Unno Y., Sayre K.D., Luna-Guido M., Vanherck K., Dendooven L., Deckers J. 2007. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, 37, 18–30. https://doi.org/10.1016/j.apsoil.2007.03.006
  • 22. Haddaway N.R., Hedlund K., Jackson L.E., Kätterer T., Lugato E., Thomsen I.K., Jørgensen H.B., Isberg P.E. 2017. How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 6, 30. https://doi.org/10.1186/s13750-017-0108-9
  • 23. Han X., Xu C., Dungait J.A.J., Bol R., Wang X., Wu W., Meng F. 2017. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences, 1–27. https://doi.org/10.5194/bg-2017-493
  • 24. Jat R.K., Sapkota T.B., Singh R.G., Jat M.L., Kumar M., Gupta R.K. 2014. Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Research, 164, 199–210. https://doi.org/10.1016/j.fcr.2014.04.015
  • 25. Kumar V., Jat H.S., Sharma P.C., Balwinder-Singh, Gathala M.K., Malik R.K., Kamboj B.R., Yadav A.K., Ladha J.K., Raman A., Sharma D.K., McDonald A. 2018. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agricultural Ecosystem and Environment, 252, 132–147. https://doi.org/10.1016/j.agee.2017.10.006
  • 26. Lehman R.M., Cambardella C.A., Stott D.E., Acosta-Martinez V., Manter D.K., Buyer J.S., Maul J.E., Smith J.L., Collins H.P., Halvorson J.J., Kremer R.J. 2015. Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability, 7(1), 988–1027.
  • 27. Magar S.T., Timsina J., Devkota K.P., Weili L., Rajbhandari N. 2022. Conservation agriculture for increasing productivity, profitability and water productivity in rice-wheat system of the Eastern Gangetic Plain. Environmental Challenges, 7, 100468. https://doi.org/10.1016/j.envc.2022.100468
  • 28. Mahanta D., Bhattacharyya R., Mishra P.K., Gopinath K.A., Channakeshavaih C., Krishnan J., Raja A., Tuti M.D., Varghese E., Pandey B.M., Bisht J.K., Bhatt J.C. 2017. Influence of a six-year organic and inorganic fertilization on the diversity of the soil culturable microrgansims in the Indian mid-Himalayas. Applied Soil Ecologies, 120, 229–238. https://doi.org/10.1016/j.apsoil.2017.08.012
  • 29. Mitran T., Mani P.K., Basak N., Mazumder D., Roy M. 2016. Long-term manuring and fertilization inf luence soil inorganic phosphorus transformation vis-a-vis rice yield in a rice–wheat cropping system. Archives of Agronomy and Soil Science, 62(1), 1–18.
  • 30. Mooshammer M., Grandy A.S., Calderón F., Culman S., Deen B., Drijber R.A., Dunfield K., Jin V.L., Lehman R.M., Osborne S.L., Schmer M. 2022. Microbial feedbacks on soil organic matter dynamics underlying the legacy effect of diversified cropping systems. Soil Biology and Biochemistry, 167, 108584. https://doi.org/10.1016/j.soilbio.2022.108584
  • 31. Nawaz A., Farooq M., Lal R., Rehman A. 2017. Comparison of conventional and conservation ricewheat systems in Punjab, Pakistan. Soil and Tillage Research, 169, 35–43. https://doi.org/10.1016/j.still.2017.01.012
  • 32. Nugroho P.A., Juhos K., Prettl N., Madarász B., Kotroczó Z. 2023. Long-term conservation tillage results in a more balanced soil microbiological activity and higher nutrient supply capacity. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2023.03.003
  • 33. Pandey B.P., Kandel T.P. 2020. Response of rice to tillage, wheat residue and weed management in a ricewheat cropping system. Agronomy, 10(11), 1734.
  • 34. Paz-Ferreiro J., Fu S. 2016. Biological indices for soil quality evaluation: perspectives and limitations. Land Degradation & Development, 27(1), 14–25. https://doi.org/10.1002/ldr.2262
  • 35. Rai A.K., Basak N., Soni P.G., Kumar S., Sundha P., Narjary B., Yadav G., Patel S., Kaur H., Yadav R.K., Sharma P.C. 2022. Bioenergy sorghum as balancing feedback loop for intensification of cropping system in salt-affected soils of the semi–arid region: Energetics, biomass quality and soil properties. European Journal of Agronomy, 134, 126452. https://doi.org/10.1016/j.eja.2021.126452
  • 36. Rai, A.K. Basak N., Sundha P. 2021. Saline and sodic ecosystems in the changing world. Soil science: Fundamentals to recent advances, 175–190.
  • 37. Rai A.K., Dinkar A., Basak N., Dixit A.K., Das S.K., Dev I., Sundha P., Chandra P., Kumar S. 2021. Phosphorus nutrition of oats genotypes in acidic soils: Exploiting responsive plant-microbe partnership. Applied Soil Ecology, 167, 104094. https://doi.org/10.1016/j.apsoil.2021.104094
  • 38. Sainju U.M., Liptzin D., Jabro J.D. 2022. Relating soil physical properties to other soil properties and crop yields. Scientific Reports, 12, 22025. https://doi.org/10.1038/s41598-022-26619-8
  • 39. Samal S.K., Rao K.K., Poonia S.P., Kumar R., Mishra J.S., Prakash V., Mondal S., Dwivedi S.K., Bhatt B.P., Naik S.K., Choubey A.K. 2017. Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia: carbon dynamics and productivity. European Journal of Agronomy, 90, 198–208. https://doi.org/10.1016/J.EJA.2017.08.006
  • 40. SAS. 2015. Base SAS 9.4 procedures guide: statistical procedures. SAS Institute Inc, Cary NC, USA.
  • 41. Singh R., Singh A., Kumar S., Fagodiya R.K., Sheoran P., Rai A.K., Rani S., Chandra P. 2023. Effect of mini-sprinkler irrigation, tillage and residue on productivity, profitability and resource saving in rice–wheat system in western Indo-Gangetic Plains of India. Paddy and Water Environment, 21(4), 479495. https://doi.org/10.1007/s10333-023-00942-w
  • 42. Singh R., Singh A., Sheoran P., Fagodiya R.K., Rai A.K., Chandra P., Rani S., Yadav R.K., Sharma P.C. 2022. Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India. Energy, 244, 122655. https://doi.org/10.1016/j.energy.2021.122655
  • 43. Singh S., Sharma S. 2020. Temporal changes in rhizosphere biological soil quality indicators of wheat in response to nitrogen and straw incorporation. Tropical Ecology, 61, 328–344. https://doi.org/10.1007/s42965-020-00092-8
  • 44. Suchiang B.R., Nonghuloo I.M., Kharbhih S., Singh P.P., Tiwary R., Adhikari D., Upadhaya K., Ramanujam P., Barik S.K. 2020. Tree diversity and community composition in sacred forests are superior than the other community forests in a human-dominated landscape of Meghalaya. Tropical Ecology, 61, 84105. https://doi.org/10.1007/s42965-020-00066-w
  • 45. Tabatabai M.A., Bremner J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307. https://doi.org/10.1016/0038-0717(69)90012-1
  • 46. Thomsen I.K., Christensen B.T. 2004. Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops. Soil Use and Management, 20, 432–438. https://doi.org/10.1111/j.1475-2743.2004. tb00393.x
  • 47. Vance E.D., Brookes P.C., Jenkinson D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707
  • 48. Walkley A., Black I. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38
  • 49. Wei T., Zhang P., Wang K., Ding R., Yang B., Nie J., Jia Z., Han Q. 2015. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PloS one, 10(4), e0120994. https://doi.org/10.1371/journal.pone.0120994
  • 50. Yan S., Song J., Fan J., Yan C., Dong S., Ma C., Gong Z. 2020. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China. Global Ecology and Conservation, 22, e00962. https://doi.org/10.1016/j.gecco.2020.e00962
  • 51. Yang T., Siddique K.H.M., Liu K. 2020. Cropping systems in agriculture and their impact on soil healthA review. Global Ecology and Conservation, 23, e01118. https://doi.org/10.1016/j.gecco.2020.e01118
  • 52. Zhang W., Li S., Xu Y., Wang Y., Liu X., Peng C., Wang J. 2020. Residue incorporation enhances the effect of subsoiling on soil structure and increases SOC accumulation. Journal of Soils and Sediments, 20, 3537–3547. https://doi.org/10.1007/s11368-020-02680-6
Uwagi
Błędny numer DOI.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c5d833c7-e757-4ec3-971d-d46f09823b29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.