Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 16, no. 1 | art. no. 20190059
Tytuł artykułu

Brain stem - from general view to computational model based on switchboard rules of operation

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite great progress in understanding the functions and structures of the central nervous system (CNS) the brain stem remains one of the least understood systems. We know that the brain stem acts as a decision station preparing the organism to act in a specific way, but such functions are rather difficult to model with sufficient precision to replicate experimental data due to the scarcity of data and complexity of large-scale simulations of brain stem structures. The approach proposed in this article retains some ideas of previous models, and provides more precise computational realization that enables qualitative interpretation of the functions played by different network states. Simulations are aimed primarily at the investigation of general switching mechanisms which may be executed in brain stem neural networks, as far as studying how the aforementioned mechanisms depend on basic neural network features: basic ionic channels, accommodation, and the influence of noise.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. 20190059
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, Toruń 87-100, Poland
  • Neurocognitive Laboratory, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wileńska 4, Toruń 87-100, Poland, darek.mikolajewski@wp.pl
  • Institute of Informatics, Kazimierz Wielki University, ul. Kopernika 1, Bydgoszcz 85-074, Poland
Bibliografia
  • [1] Prats-Galino A, Soria G, de Notaris M, Puig J, Pedraza S. Functional anatomy of subcortical circuits issuing from or integrating at the human brain stem. Clin Neurophysiol 2012;123:4-12.
  • [2] Laigle-Donadey F, Doz F, Delattre JY. Brain stem tumors. Handb Clin Neurol 2012;105:585-605.
  • [3] Hurley RA, Flashman LA, Chow TW, Taber KH. The brain stem: anatomy, assessment, and clinical syndromes. J Neuropsychiatry Clin Neurosci 2010;22:1-7.
  • [4] Szalisznyó K, Zalányi L. Role of hyperpolarization-activated conductances in the auditory brain stem. Neurocomputing 2004;58-60:401-7.
  • [5] Butera RJ Jr., Johnson SM, DelNegro CA, Rinzel J, Smith JC. Dynamics of excitatory networks of bursting pacemaking neurons: modeling and experimental studies of the respiratory central pattern generator. Neurocomputing 2000;32-33:323-30.
  • [6] Kosmidis EK, Vibert JF. A model of respiration rhythmogenesis bridging network and pacemaker theories. Neurocomputing 2001;38-40:733-9.
  • [7] Rybak LA, Paton JF, Rogers RF, St.-John WM. Generation of the respiratory rhythm: state-dependency and switching. Neurocomputing 2002;44-46:605-14.
  • [8] Li L, Xia Y, Jelfs B, Cao J, Mandic DP. Modelling of brain consciousness based on collaborative adaptive filters. Neurocomputing 2012;76:36-43.
  • [9] Filippov IV, Gladyshev AV, Williams WC. Role of infraslow (0-0.5 Hz) potential oscillations in the regulation of brain stress response by the locus coeruleus system. Neurocomputing 2002;44-46:795-8.
  • [10] Damasio A. Self comes to mind. Constructing the conscious brain. New York: Pantehon Books, 2010.
  • [11] Humphries MD, Gurney K. A means to an end: Validating models by fitting experimental data. Neurocomputing 2007;70:1892-6.
  • [12] O’Reilly RC, Munakata Y. Computational explorations in cognitive neuroscience: understanding the mind by simulationg the brain. Cambridge: MIT Press, 2000.
  • [13] Kilmer W. A command computer for complex autonomous systems. Neurocomputing 1997;17:47-59.
  • [14] Dunin-Barkowski WL, Lovering AT, Orem JM, Baekey DM, Dick TE, Rybak IA, et al. L-plotting - a method for visual analysis of physiological experimental and modeling multi-component data. Neurocomputing 2010;74:328-36.
  • [15] Babadi B. Stimulus transmission by tonic and burst responses in a minimal model of thalamic circuit. Neurocomputing 2004;58-60:7-12.
  • [16] Shin J. Towards computational and robotic modelling of animal cognition and behavior. Neurocomputing 2002;44-46:985-92.
  • [17] Gray RT, Fung CK, Robinson PA. Stability of small-world networks of neural populations. Neurocomputing 1999;24:1-11.
  • [18] Humphries MD, Gurney KN, Prescott TJ. The brain stem reticular formation is a small world not scale free network. Proc Biol Sci 2006;273:503-11.
  • [19] Olmsted DD. The recticular formation as a multi-valued logic neural network. Proceedings of International Joint Conference on Neural Networks 1990;1:619-24.
  • [20] Zacks JM, Speer NK, Swallow KM, Braver TS, Reynolds JR. The brain’s cutting-room floor: segmentation of narrative cinema. Frontiers Hum Neurosci 2010;4:1-15.
  • [21] Cvetkovic D, Cosic I, editors. States of consciousness. Experimental insights into meditation, waking, sleep and dreams. New York: Springer, 2011.
  • [22] Merker B. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav Brain Sci 2004;30:63-134.
  • [23] Goertzel B, Lian R, Arel I, de Garis H, Chen S. A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures. Neurocomputing 2010;74:30-49.
  • [24] Duch W, Oentaryo R, Pasquier M.Cognitive architectures: where do we go from here?Frontiers in Artificial Intelligence and Applications.2008.
  • [25] Dobosz K, Duch W. Understanding neurodynamical systems via fuzzy symbolic dynamics. Neural Networks 2010;23:487-96.
  • [26] Duch W, Dobosz K. Visualization for understanding of neurodynamical systems. Cognitive Neurodynamics 2011;5:145-60.
  • [27] Mikolajewski D, Duch W. Brain stem modeling at a system level - chances and limitations. Bio-Algorithms Med-Systems 2018;14. DOI: 10.1515/bams-2018-0015.
  • [28] Kamiński WA. Wójcik GM. Liquid state machine built of Hodgkin-Huxley neurons. Informatica 2004;15:39-44.
  • [29] Wójcik GM, Ważny M. Bray-Curtis Metrics as measure of liquid state machine separation ability in function of connections density. International Conference on Computational Science, ICCS 2015 Computational Science at the Gates of Nature. Procedia Comp Sci 2015;51:2979-83.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c5b578a6-93d9-456c-b1ca-a4e519167eeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.