Warianty tytułu
Języki publikacji
Abstrakty
Date palm cultivation in regions such as the Middle East and north Africa plays a crucial role in food security, economic development, and environmental preservation. However, the sustainability of date palm farming is threatened by challenges such as soil degradation and nutrient depletion. To address these issues, organic farming practices, particularly the use of compost and compost tea, offer promising solutions. This study assessed the impact of these organic inputs on soil fertility and nutrient uptake in the “Mejhoul” date palm variety. A field experiment was carried out during two successive seasons of 2022 and 2023 in a pilot field in south-eastern Morocco using a completely randomized experimental design with four treatments: To: farmer’s practice (50 kg of compost/tree), T1: To+compost tea at 15 liter/tree/week from April to October; T2: To+compost at 50kg/tree and T3: To+combination of 50 kg/tree of compost and tea compost 15L/tree/week from April to October. Results showed that compost tea (T1) and compost (T2) treatments significantly influenced soil macronutrient and micronutrient levels, as well as chemical properties such as organic matter, cation exchange capacity, electrical conductivity, and pH. Pearson correlation analysis revealed significant relationships among soil properties, with principal component analysis confirming the variability explained by the main plane. Leaf nutrient content analysis demonstrated seasonal variations and treatment effects on phosphorus, potassium, magnesium, nitrogen, copper, manganese, zinc, and iron levels. Correlation analysis of leaf nutrient content highlighted complex interactions between nitrogen, phosphorus, potassium, and micronutrients, reflecting their importance in palm leaf physiology. Overall, this study provides valuable insights into the benefits of organic inputs in date palm farming, supporting sustainable agricultural practices for long-term viability and environmental protection.
Czasopismo
Rocznik
Tom
Strony
224--240
Opis fizyczny
Bibliogr. 94 poz., rys., tab.
Twórcy
autor
- Hassan II Institute of Agronomy and Veterinary Medicine, Department of Production, Protection and Plant Biotechnology, Rabat, Morocco, fatiha.hakimi2024@gmail.com
autor
- Hassan II Institute of Agronomy and Veterinary Medicine, Department of Production, Protection and Plant Biotechnology, Rabat, Morocco
autor
- National School of Agriculture, Department of Environment and Plant Protection, Plant Ecology Unit, Meknes, Morocco
- Hassan II Institute of Agronomy and Veterinary Medicine, Department of Production, Protection and Plant Biotechnology, Rabat, Morocco
autor
- Hassan II Institute of Agronomy and Veterinary Medicine, Department of Production, Protection and Plant Biotechnology, Rabat, Morocco
autor
- Hassan II Institute of Agronomy and Veterinary Medicine, Department of Production, Protection and Plant Biotechnology, Rabat, Morocco
Bibliografia
- 1. Abdel-Haleem, E.S., Farrag, H.M., Abeer, B.A. K.R., Abdelrasheed, K.G. 2022. Combined use of compost, compost tea, and vermicompost tea improves soil properties, and growth, yield, and quality of (Allium cepa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12565–12565. https://doi.org/10.15835/nbha50112565
- 2. Adejumo, S.A., Owolabi, M.O., Odesola, I.F. 2016. Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. African Journal of Agricultural Research, 11(8), 661–673. https://doi.org/10.5897/AJAR2015.9895
- 3. Adugna, G. 2016. A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4(3), 93–104. https://doi.org/10.14662/ARJASR2016.010
- 4. Agegnehu, G., Srivastava, A.K., Bird, M.I. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied soil ecology, 119, 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008
- 5. Ahmed, M., Kassem, H., Al-Obeed, R. 2013. Effect of organo-mineral fertilizers on Sakki date palm Phoenix dactylifera L. fruits yield, quality and nutritional value. Bothalia J, 43, 103–116. https://doi.org/10.3390/agronomy10060886
- 6. Al-Hinai, A., Jayasuriya, H., Pathare, P. B., Al Abri, I. 2022. Prospects and challenges of date fruit value-addition in Oman. Quality Assurance and Safety of Crops & Foods, 14(SP1), 25–32. https://doi.org/10.15586/qas.v14iSP1.1110
- 7. Almadini A.M, Ismail A.I.H, Ameen F.A. 2021. Assessment of farmers practices to date palm soil fertilization and its impact on productivity at Al-Hassa oasis of KSA. Saudi J Biol Sci. 2021 Feb; 28(2), 1451–1458. https://doi.org/10.1016/j.sjbs.2020.11.084
- 8. Al-Khayri, J.M., Naik, P.M., Jain, S.M., Johnson, D. V. 2018. Advances in date palm (Phoenix dactylifera L.) breeding. In: Al-Khayri J.M., Jain S.M., Johnson D. (Eds). Advances in Plant Breeding Strategies: Fruits. Springer Nature: Cham, Switzerland, 727771. https://doi.org/10.1007/978-3-319-91944-7_18
- 9. Alotaibi, K.D., Alharbi, H.A., Yaish, M.W., Ahmed, I., Alharbi, S.A., Alotaibi, F., Kuzyakov, Y. 2011. Date palm cultivation: A review of soil and environmental conditions, and future challenges. 2011. Land Degradation & Development. https://doi.org/10.1002/ldr.4619
- 10. Bayoumy, M.A., Khalifa, T.H.H., Aboelsoud, H.M. 2019. Impact of some organic and inorganic amendments on some soil properties and wheat production under saline-sodic soil. Journal of Soil Sciences and Agricultural Engineering, 10(5), 307–313. https://doi.org/10.21608/JSSAE.2019.43221
- 11. Benziouche, S.E. 2017. L’agriculture biologique, un outil de développement de la filière dattes dans la région des Ziban en Algérie. Cahiers Agricultures, 26(3), 35008. https://doi.org/10.1051/cagri/2017025
- 12. Bhat, B.A., Islam, S.T., Ali, A., Sheikh, B.A., Tariq, L., Islam, S.U., Hassan Dar, T.U. 2020. Role of micronutrients in secondary metabolism of plants. Plant Micronutrients: Deficiency and Toxicity Management, 311–329. https://doi.org/10.1007/978-3-030-49856-6_13
- 13. Bouhlassa, S., Paré, S. 2006. Évapotranspiration de référence dans la région aride de Tafilalet au sud-est du Maroc. African journal of Environmental assessment and management, 11, 1–16.
- 14. Cakmak, I., Brown, P., Colmenero-Flores, J.M., Husted, S., Kutman, B.Y., Nikolic, M., Rengel, F., Schmidt, S.B., Zhao, F.J. 2023. Micronutrients. In Marschner’s mineral nutrition of plants, 283–385. Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00017-4
- 15. Cole, C.V., Grunes, D.L., Porter, L.K., Olsen, S.R. 1963. The effects of nitrogen on short‐term phosphorus absorption and translocation in corn (Zea mays L). Soil Science Society of America Journal, 27(6), 671–674. https://doi.org/10.2136/sssaj1963.03615995002700060031x
- 16. Cruz, A.F., Almeida, G.M.D., Wadt, P.G.S., Pires, M. D.C., Ramos, M.L.G. 2019. Seasonal variation of plant mineral nutrition in fruit trees. Brazilian Archives of Biology and Technology, 62, e19180340. https://doi.org/10.1590/1678-4324-2019180340
- 17. Das, S.K. 2014. Role of micronutrient in rice cultivation and management strategy in organic agriculture—A reappraisal. Agricultural Sciences. https://doi.org/10.4236/as.2014.59080
- 18. Doran, I., Sen, B., Kaya, Z. 2003. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves. Journal of Environmental Biology, 24(4), 437–444.
- 19. Dubberstein, D., Partelli, F.L., Dias, J.R.M., Espindola, M.C. 2016. Concentration and accumulation of macronutrients in leaf of coffee berries in the Amazon, Brazil. Australian Journal of Crop Science, 10(5), 701–710. https://search.informit.org/doi/10.3316/informit.203302793623817
- 20. Duong, T.T., Penfold, C., Marschner, P. 2012. Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant and Soil, 354, 197209. https://doi.org/10.1007/s11104-011-1056-8
- 21. Eghball, B., Ginting, D., Gilley, J.E. 2004. Residual effects of manure and compost applications on corn production and soil properties. Agronomy Journal, 96(2), 442–447. https://doi.org/10.2134/agronj2004.4420
- 22. El-Gizawy, E.S.A., Atwa, A.A.I., Talha, N.I., Mostafa, R.A.I. 2013. Effect of compost and compost tea application on faba bean crop and some soil biological and chemical properties. Journal of Soil Sciences and Agricultural Engineering, 4(9), 863–874. http://doi.org/10.21608/JSSAE.2013.52477
- 23. Eudoxie, G, Martin, M. 2019. Compost tea quality and fertility. In: Organic Fertilizers – History Production and Applications. Marcelo Larramendy and Sonia Soloneski Intech Open. https://doi.org/10.5772/intechopen.86877
- 24. Fageria, N.K., Oliveira, J.P. 2014. Nitrogen, phosphorus and potassium interactions in upland rice. Journal of Plant Nutrition, 37(10), 1586–1600. https://doi.org/10.1080/01904167.2014.920362
- 25. Fouda, S.E., Niel, E.M. 2021. Influence of compost tea and potassium humate on soil properties and plant growth. Asian Journal of Soil Science and Plant Nutrition, 7(2), 29–40. https://doi.org/10.9734/ajsspn/2021/v7i230109
- 26. Gani, A.T., Odey, C.A., Christopher, A. 2020. Effects of compost tea application on soil properties, growth and yield of amaranthus (Amaranthus caudatus L.) in Wukari, Northern Guinea Savanna, Nigeria. Asian Soil Research Journal, 4(1), 34–42. https://doi.org/10.9734/asrj/2020/v4i130085
- 27. Goldan, E., Nedeff, V., Barsan, N., Culea, M., Panainte-Lehadus, M., Mosnegutu, E., Tomozei C., Chitimus D. Irimia, O. 2023. Assessment of manure compost used as soil amendment—A review. Processes, 11(4), 1167. https://doi.org/10.3390/ pr11041167
- 28. Gomiero, T., Pimentel, D., Paoletti, M.G. 2011. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical reviews in plant sciences, 30(1–2), 95–124. https://doi.org/10.1080/07352689.2011.554355
- 29. Gómez-Brandón, M., Vela, M.A.R.Í.A., MartínezToledo, M.V., Insam, H., Domínguez, J. 2015. Effects of compost and vermicompost teas as organic fertilizers. Advances in Fertilizer: Technology Synthesis1, 300–318.
- 30. Graham, R.D. 2008. Micronutrient deficiencies in crops and their global significance. In Micronutrient deficiencies in global crop production, 41–61. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6860-7_2
- 31. Habte, M., Boke, S. 2017. Influence of balanced nutrients on growth performance and yield of Teff (Eragrostis tef (Zucc.)) in the midland of Bensa, Southern Ethiopia. Journal of Scientific and Innovative Research, 6(3), 101–103. https://doi.org/10.31254/jsir.2017.6303
- 32. Hadrami, A.E., Daayf, F., Hadrami, I.E. 2011. Date palm genetics and breeding. Date palm biotechnology, 479–512. https://doi.org/10.1007/978-94-007-1318-5_23
- 33. Hajiboland, R. 2012. Effect of micronutrient def iciencies on plants stress responses. Abiotic stress responses in plants: metabolism, productivity and sustainability, 283–329. https://doi.org/10.1007/978-1-4614-0634-1_16
- 34. Hernández, A., Castillo, H., Ojeda, D., Arras, A., López, J., Sánchez, E. 2010. Effect of vermicompost and compost on lettuce production. Chilean journal of agricultural research, 70(4), 583–589. http://dx.doi.org/10.4067/S0718-58392010000400008
- 35. Hoffmann, C., Ladewig, E., Claassen, N., Jungk, A. 1994. Phosphorus uptake of maize as affected by ammonium and nitrate nitrogen‐Measurements and model calculations‐. Zeitschrift für Pflanzenernährung und Bodenkunde, 157(3), 225–232. https://doi.org/10.1002/jpln.19941570310
- 36. Hu, Y., Barker, A. V. 2004. Effects of composts and their combinations with other materials on nutrient accumulation in tomato leaves. Communications in soil science and plant analysis, 35(19–20), 28092823. https://doi.org/10.1081/CSS-200036458
- 37. Husson, F., Lê, S., Pagès, J. 2017. Exploratory Multivariate Analysis by Example Using R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA,; ISBN 978-0-429-22543-7. https://doi.org/10.1201/b21874
- 38. Islam, M.R., Sultana, T., Haque, M.A., Hossain, M. I., Sabrin, N., Islam, R. 2018. Growth and yield of chilli influenced by nitrogen and phosphorus. Journal of Agriculture and Veterinary Science, 11(5), 54–68. https://doi.org/10.5455/faa.52998
- 39. Jain, M.S., Kalamdhad, A.S. 2020. Soil revitalization via waste utilization: Compost effects on soil organic properties, nutritional, sorption and physical properties. Environmental Technology & Innovation, 18, 100668. https://doi.org/10.1016/j.eti.2020.100668
- 40. Jiang, J., Wang, Y.P., Yang, Y., Yu, M., Wang, C., Yan, J. 2019. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant and Soil, 440, 523–537. https://doi.org/10.1007/s11104-019-04119-5
- 41. Jiaying, M., Tingting, C., Jie, L., Weimeng, F., Baohua, F., Guangyan, L., Guanfu, F. 2022. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Science, 29(2), 166–178. https://doi.org/10.1016/j.rsci.2022.01.005
- 42. Jolley, V.D., Brown, J.C., Blaylock, M.J., Camp, S.D. 1988. A role for potassium in the use of iron by plants. Journal of plant nutrition, 11(6–11), 11591175. https://doi.org/10.1080/01904168809363875
- 43. Khan, A.A., Hamida Bibi, H.B., Zahid Ali, Z.A., Muhammad Sharif, M.S., Shah, S.A., Haroon Ibadullah, H. I., Sajid Ali, S.A. 2017. Effect of compost and inorganic fertilizers on yield and quality of tomato. Academia Journal of Agricultural Research, 5 (10), 287–293. https://doi.org/10.15413/ajar.2017.0135
- 44. Kim, M.J., Shim, C.K., Kim, Y.K., Hong, S.J., Park, J.H., Han, E.J., Kim J.H., Kim, S.C. 2015. Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. The Plant Pathology Journal, 31(3), 259. https://doi.org/10.5423/PPJ.OA.02.2015.0024
- 45. Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., Abdelly, C. 2009. Effectiveness of compost use in salt-affected soil. Journal of hazardous materials, 171(1–3), 29–37. https://doi.org/10.1016/j.jhazmat.2009.05.132
- 46. Lazcano, C., Domínguez, J. 2011. The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. Soil nutrients, 10(1–23), 187.
- 47. Leghari, S.J., Wahocho, N.A., Laghari, G.M., Hafeez Laghari, A., Mustafa Bhabhan, G., Hussain Talpur, K., Lashari, A.A. 2016. Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209–219. https://doi.org/10.4236/ajps.2016.712150
- 48. Li, J., Guo, Q., Zhang, J., Korpelainen, H., Li, C. 2016. Effects of nitrogen and phosphorus supply on growth and physiological traits of two Larix species. Environmental and Experimental Botany, 130, 206–215. https://doi.org/10.1016/j.envexpbot.2016.06.006
- 49. Li, L., Liu, B., Gao, X., Li, X., Li, C. 2019. Nitrogen and phosphorus addition differentially affect plant ecological stoichiometry in desert grassland. Scientific Reports, 9(1), 18673. https://doi.org/10.1038/ s41598-019-55275-8
- 50. Libutti, A., Trotta, V., Rivelli, A.R. 2020. Biochar, vermicompost, and compost as soil organic amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy, 10(3), 346. https://doi.org/10.3390/agronomy10030346
- 51. Liu, M., Jiang, Y., Xu, X., Huang, Q., Huo, Z., Huang, G. 2018. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China. Agricultural Water Management, 203, 37–52 https://doi.org /10.1016/j.agwat.2018.02.028
- 52. Lu, S., Qiu, J., Wang, J., Hui, W., Zhai, Y., Xv, J., Yang H., Muhammad F.D., Ali M.A., Gong, W. 2024. Seasonal changes of mineral nutrients absorption and allocation in fruit of Zanthoxylum bungeanum ‘Hanyuan’ during the development. Scientia Horticulturae, 324, 112586. https://doi.org/10.1016/j.scienta.2023.112586
- 53. Luo, T., Lu, W., Chen, L., Min, T., Ru, S., Wei, C., Li, J. 2022. The effects of acidic compost tea on activation of phosphorus, Fe, Zn, and Mn in calcareous soil and cotton (Gossypium hirsutum L.) growth in Xinjiang, China. Journal of Soil Science and Plant Nutrition, 22(3), 3822–3834. https://doi.org/10.1007/s42729-022-00933-6
- 54. Luo, T., Ma, L., Wei, C., Li, J. 2022. Effects of compost tea on the spatial distribution of soil nutrients and growth of cotton under different fertilization strategies. Journal of Plant Nutrition, 45(10), 1523–1535. https://doi.org/10.5423/PPJ.OA.02.2015.0024
- 55. Luo, T., Min, T., Ru, S., Li, J. 2022. Response of cotton root growth and rhizosphere soil bacterial communities to the application of acid compost tea in calcareous soil. Applied Soil Ecology, 177, 104523. https://doi.org/10.1016/j.apsoil.2022.104523
- 56. Ma, B.L., Zheng, Z., Whalen, J.K., Caldwell, C., Vanasse, A., Pageau, D., Scott P., Earl H., Smith, D. L. 2019. Uptake and nutrient balance of nitrogen, sulfur, and boron for optimal canola production in eastern Canada. Journal of Plant Nutrition and Soil Science, 182(2), 252–264. https://doi.org/10.1002/jpln.201700615
- 57. Machado, R.M., Alves-Pereira, I., Faty, Y., Perdigão, S., Ferreira, R. 2021. Influence of nitrogen sources applied by fertigation to an enriched soil with organic compost on growth, mineral nutrition, and phytochemicals content of coriander (Coriandrum sativum L.) in two successive harvests. Plants, 11(1), 22. https://doi.org/10.3390/plants11010022
- 58. Mahmoudi, H., Hosseininia, G., Azadi, H., Fatemi, M. 2008. Enhancing date palm processing, marketing and pest control through organic culture. Journal of Organic Systems, 3(2), 29–39.
- 59. Malvi, U.R. 2011. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka Journal of Agricultural Sciences, 24(1). https://doi.org/10.4236/vp.2020.64020
- 60. Marosz, A. 2012. Effect of green waste compost and mycorrhizal fungi on calcium, potassium, and sodium uptake of woody plants grown under salt stress. Water, Air, & Soil Pollution, 223, 787–800. https://doi.org/10.1007/s11270-011-0902-x
- 61. Mazri, M.A., Belkoura, I., Meziani, R., Es-Saoudy, H., Rachad, F., Elmaataoui, S. 2019. Impact of osmotica and plant growth regulators on somatic embryogenesis of date palm. Current Agriculture Research Journal, 7(3), 296. https://doi.org/10.12944/CARJ.7.3.04
- 62. Meziani, R., Mazri, M.A., Arhazzal, M., Belkoura, I., Chakib, A.L.E.M., Jaiti, F. 2019. Evaluation of in vitro shoot elongation and rooting of date palm, and determination of physiological characteristics of regenerated plantlets. Notulae Scientia Biologicae, 11(1), 77–85. https://doi.org/10.15835/nsb11110402
- 63. Mussarat, M., Shair, M., Muhammad, D., Mian, I. A., Khan, S., Adnan, M., Fahad S., Fahad E.S., Sabagh A.L., Zia A., Khan B., Shahzad, B., Anwar S., Ilahi, H., Ahmad, M., Bibi B., Adnan M., Khan, F. 2021. Accentuating the role of nitrogen to phosphorus ratio on the growth and yield of wheat crop. Sustainability, 13(4), 2253. https://doi.org/10.3390/su13042253
- 64. Mylavarapu, R.S., Zinati, G.M. 2009. Improvement of soil properties using compost for optimum parsley production in sandy soils. Scientia horticulturae, 120(3), 426–430. https://doi.org/10.1016/j.scienta.2008.11.038
- 65. Naidu, Y., Meon, S., Siddiqui, Y. 2013. Foliar application of microbial-enriched compost tea enhances growth, yield and quality of muskmelon (Cucumis melo L.) cultivated under fertigation system. Scientia Horticulturae, 159, 33–40. https://doi.org/10.1016/j.scienta.2013.04.024
- 66. Namboothiripad, P., Pushpa, J., Mahandrakumar, K., Amarnath, J.S., Prabakaran, K.P. 2021. An Impact Study-Perception and Constraints of Organic Agriculture Farmers. International Journal of Current Microbiology and Applied Sciences, 10, 2450–2455. https://doi.org/10.20546/ijcmas.2021.1001.183
- 67. Omotayo, O.E., Chukwuka, K.S. 2009. Soil fertility restoration techniques in sub-Saharan Africa using organic resources. African Journal of Agricultural Research, 4(3), 144–150.
- 68. Ouédraogo, E., Mando, A., Zombré, N.P. 2001. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agriculture, Ecosystems & environment, 84(3), 259–266. https://doi.org/10.1016/S0167-8809(00)00246-2
- 69. Ou-Zine, M., Symanczik, S., Rachidi, F., Fagroud, M., Aziz, L., Abidar, A., Bouamri, R. 2021. Effect of organic amendment on soil fertility, mineral nutrition, and yield of majhoul date palm cultivar in Drâa-tafilalet region, Morocco. Journal of Soil Science and Plant Nutrition, 21, 1745–1758. https://doi.org/10.1007/s42729-021-00476-2
- 70. Ou-Zine, M., Symanczik, S., el Kinany, S., Aziz, L., Fagroud, M., Abidar, A., Bouamri, R. 2023. Effect of PGPR and mixed cropping on mycorrhizal status, soil fertility, and date palm productivity under organic farming system. Research Square, 20, xx. https://doi.org/10.21203/rs.3.rs-3225865/v1
- 71. Pane, C., Palese, A.M., Celano, G., Zaccardelli, M. 2014. Effects of compost tea treatments on productivity of lettuce and kohlrabi systems under organic cropping management. Italian Journal of Agronomy, 9(3), 153–156. https://doi.org/10.4081/ija.2014.596
- 72. Panda, B.B., Sharma, S., Mohapatra, P.K., Das, A. 2012. Application of excess nitrogen, phosphorus, and potassium fertilizers leads to lowering of grain iron content in high-yielding tropical rice. Communications in soil science and plant analysis, 43(20), 2590–2602. https://doi.org/10.1080/00103624.2012.716122
- 73. Peng, Y., Peng, Z., Zeng, X., Houx, J. H. 2019. Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective. Plant and Soil, 436, 245–252. https://doi.org/10.1007/s11104-018-03927-5
- 74. Rahman, R., Sofi, J.A., Javeed, I., Malik, T.H., Nisar, S. 2020. Role of micronutrients in crop production. International Journal of Current Microbiology and Applied Sciences, 8, 2265–2287.
- 75. Safwat, M.S.A. 2007. Organic farming of date palm and recycling of their wastes. In African crop science conference proceedings 8, 2109–2111.
- 76. Sánchez, Ó.J., Ospina, D.A., Montoya, S. 2017. Compost supplementation with nutrients and microorganisms in composting process. Waste management, 69, 136–153. https://doi.org/10.1016/j.wasman.2017.08.012
- 77. Sanyal, S.K., Majumdar, K. 2009. Nutrient dynamics in soil. Journal of the Indian Society of Soil Science, 57(4), 477–493. https://doi.org/10.1300/J411v11n01_10
- 78. Sarwar, G., Schmeisky, H., Tahir, M.A., Iftikhar, Y., Sabah, N.U. 2010. Application of green compost for improvement in soil chemical properties and fertility status. Journal of Animal and Plant Sciences, 20(4), 258–260.
- 79. Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., Rao, M.A. 2015. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. Journal of soil science and plant nutrition, 15(2), 333–352. http://dx.doi. org/10.4067/S0718-95162015005000031
- 80. Sedra, M.H. 2015. Date palm status and perspective in Morocco. Date Palm Genetic Resources and Utilization, 1, Africa and the Americas, 257–323. https://doi.org/10.1007/978-94-017-9694-1_8
- 81. Seleiman, M.F., Hafez, E.M. 2021. Optimizing inputs management for sustainable agricultural development. Mitigating environmental stresses for agricultural sustainability in Egypt, 487–507. https://doi.org/10.1007/978-3-030-64323-2_18
- 82. Shaban, H., Fazeli-Nasab, B., Alahyari, H., Alizadeh, G., Shahpesandi, S. 2015. An Overview of the Benefits of Compost tea on Plant and Soil Structure. Advances in Bioresearch, 6(1), 154–158 https://doi.org/10.15515/abr.0976‐4585.6.1.154158
- 83. Shen, Q., Gao, G., Han, F., Xiao, F., Ma, Y., Wang, S., Fu, B. 2018. Quantifying the effects of human activities and climate variability on vegetation cover change in a hyper‐arid endorheic basin. Land Degradation & Development, 29(10), 3294–3304. https://doi.org/10.1002/ldr.3085
- 84. Shiel, R. S. 2010. An introduction to soil nutrient flows. Soils and societies: Perspectives from environmental history, 7–12.
- 85. Shrestha, J., Kandel, M., Subedi, S., Shah, K. K. 2020. Role of nutrients in rice (Oryza sativa L.): A review. Agrica, 9(1), 53–62. http://dx.doi.org/10.5958/2394-448X.2020.00008.5
- 86. St. Martin, C.C. 2015. Enhancing soil suppressiveness using compost and compost tea. Organic Amendments and Soil Suppressiveness in Plant Disease Management, 25–49. https://doi.org/10.1007/978-3-319-23075-7_2
- 87. St. Martin, C.C.G., Brathwaite, R.A.I. 2012. Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture & Horticulture, 28(1), 1–33. https://doi.org/10.1080/01448765.2012.671516
- 88. Szlek, M., Miller, G.W., Welkie, G.W. 1990. Potassium effect on iron stress in tomato. I. The effect on pH, Fe‐reductase and chlorophyll. Journal of plant nutrition, 13(2), 215–229. https:// doi.org/10.1080/01904169009364069
- 89. Tejada, M., Hernandez M.T., Garcia C. 2009. Soil restoration using composted plant residues: Effects on soil properties. Soil and Tillage Res. 102, 109–117. https://doi.org/10.1016/j.still.2008.08.004
- 90. Teng, Y., Timmer, V.R. 1994. Nitrogen and phosphorus interactions in an intensively managed nursery soil‐plant system. Soil Science Society of America Journal, 58(1), 232–238. https://doi.org/10.2136/sssaj1994.03615995005800010035x
- 91. Vogel, H.J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., Rabot E., Russell D., Stößel B., Weller U., Wiesmeier M Wollschläger, U. 2018. A systemic approach for modeling soil functions. Soil, 4(1), 83–92. https://doi.org/10.5194/soil-4-83-2018
- 92. Weindorf, D.C., Muir, J.P., Landeros-Sánchez, C. 2011. Organic compost and manufactured fertilizers: Economics and ecology. Integrating agriculture, conservation and ecotourism: Examples from the field, 27–53. https://doi.org/10.1007/978-94-007-1309-3_2
- 93. Ye, J., Wang, Y., Kang, J., Chen, Y., Hong, L., Li, M., Jia Y., Wang Y.,Jia X., Wu Z, Wang, H. 2022. Effects of long-term use of organic fertilizer with different dosages on soil improvement, nitrogen transformation, tea yield and quality in acidified tea plantations. Plants, 12(1), 122. https://doi.org/10.3390/plants12010122
- 94. Zhang, Z., Lynch, J.P., Zhang, B., Wang, Q. 2017. NPK deficiency modulates oxidative stress in plants. In Plant macronutrient use eff iciency 245–265. Academic Press. https://doi.org/10.1016/B978-0-12-811308-0.00014-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c585abda-fa36-41c7-8f26-db89aea7b3b6