Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 66, No. 6 | 7--14
Tytuł artykułu

The comparison of the effect of powder morphology on the microstructure and mechanical properties of WC-Co-Cr coatings HVOF-sprayed on substrates made of alloy AZ31

Warianty tytułu
PL
Porównanie wpływu morfologii proszku na mikrostrukturę i własności mechaniczne powłok WC-Co-Cr natryskanych metodą HVOF na podłoże ze stopu AZ31
Języki publikacji
EN
Abstrakty
EN
The paper presents results of comparative tests concerning the effect of the morphology and particle size of the WC-Co-Cr coating material on the microstructure and mechanical properties of coatings sprayed (using the high velocity oxy-fuel method (HVOF)) on substrates made of magnesium alloy AZ31. The tests involved the use of two types of commercial powders, i.e. agglomerated and sintered powder (AS) (Höganäs, Amperit 558.074) and sintered powder (S) (Höganäs, Amperit 554.071). The microstructures of the coatings were observed using digital light microscopy and scanning electron microscopy. The tests also involved the determination of porosity and roughness as well as measurements of instrumental hardness (HIT) and Young’s modulus (EIT ). The microscopic observations revealed that the coatings were characterized by the relatively compact, dense and uniform structure as well as good adhesion to the substrate. The porosity of the S-type coating was approximately 1.5 times higher than that of the AS-type coating. In addition, the S-type coating was visibly thinner (than the AS-type coating), which could be ascribed to a lower powder feed rate applied during the spraying process. The surface of the AS-type coating was characterized by lower roughness (Ra = 4.5 ± 0.1 μm) than that of the S-type coating (Ra = 5.8 ± 0.3 μm). The differences in terms of instrumental hardness (HIT) and instrumental Young’s modulus (EIT) were also small. However, it could be noticed that the more compact structure and lower porosity of the AS-type coating resulted in the obtainment of slightly higher values of both HIT and EIT.
PL
W pracy przedstawiono wyniki badań porównania wpływu morfologii oraz wielkości cząstek materiału powłokowego WC-Co-Cr na mikrostrukturę i własności mechaniczne powłok natryskiwanych płomieniowo naddźwiękowo (High Velocity Oxy-Fuel) na podłoże ze stopu magnezu AZ31. Do badań wybrano dwa rodzaje handlowego proszku: aglomerowany i spiekany (AS) – Höganäs, Amperit 558.074 oraz spiekany (S) – Höganäs, Amperit 554.071. Obserwacje mikrostruktur wytworzonych powłok wykonano przy użyciu mikroskopów: cyfrowego świetlnego oraz skaningowego elektronowego. Określono także porowatość i chropowatość oraz zmierzono twardość instrumentalną (HIT) i moduł Younga (EIT). Na podstawie wykonanych obserwacji mikroskopowych stwierdzono, że wytworzone powłoki charakteryzują się stosunkowo zwartą, gęstą oraz jednolitą strukturą i dobrze przylegają do podłoża. Porowatość powłoki S jest ok. 1,5 razy większa niż w przypadku powłoki AS. Ponadto charakteryzuje ją widocznie mniejsza grubość niż powłoki AS, co jest związane z mniejszym wydatkiem podawania proszku w trakcie procesu natryskiwania. Powierzchnia powłoki AS odznacza się mniejszą chropowatością niż powłoki S, odpowiednio: Ra = 4,5 ± 0,1 µm i Ra = 5,8 ± 0,3 µm. Różnice w wartości twardości instrumentalnej (HIT) oraz instrumentalnego modułu Younga (EIT) są również niewielkie, jednakże można zauważyć, że bardziej zwarta budowa oraz niższa porowatość powłok AS wpływają na uzyskanie nieznacznie wyższych wartości zarówno HIT, jak i EIT.
Wydawca

Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Politechnika Wrocławska, Wydział Mechaniczny, Katedra Przeróbki Plastycznej, Spawalnictwa i Metrologii (Wrocław University of Technology, Faculty of Mechanical Engineering, Department of Plastic Processing, Welding and Metrology)
autor
  • Politechnika Śląska, Wydział Mechaniczny Technologiczny, Katedra Materiałów Inżynierskich i Biomedycznych (Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials)
  • Politechnika Wrocławska, Wydział Mechaniczny, Katedra Przeróbki Plastycznej, Spawalnictwa i Metrologii (Wrocław University of Technology, Faculty of Mechanical Engineering, Department of Plastic Processing, Welding and Metrology)
Bibliografia
  • [1] Yang X., Liu J., Wang Z., Lin X., Liu F., Huang W., Liang E.: Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process. Materials Science and Engineering: 2020, A, vol. 774, 138942, pp. 1–9.
  • [2] Mazaheri Y., Jalilvand M.M., Heidarpour A., Jahani A.: Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing. Tribology International, 2020, vol. 143, 106062, pp. 1–14.
  • [3] Pollock T.M.: Weight Loss with Magnesium Alloys. Materials Science, 2010, vol. 328, pp. 986–987.
  • [4] Yang Y., Xiong X., Chen J., Peng X., Chen D., Pan F.: Research advances in magnesium and magnesium alloys worldwide in 2020. Journal of Magnesium and Alloys, 2021, vol. 9, no. 3, pp. 705–747.
  • [5] Fouad Y., El Batanouny M.: Effect of surface treatment on wear behavior of magnesium alloy AZ31. Alexandria Engineering Journal, 2011, vol. 50, no. 1, pp. 19–22.
  • [6] Taltavull C., Lopez A.J., Torres B., Atrens A., Rams J.: Optimization of the high velocity oxygen fuel (HVOF) parameters to produce effective corrosion control coatings on AZ91 magnesium alloy. Materials and Corrosion, 2015, vol. 66, no. 5, pp. 423–432.
  • [7] Song G.-L., Xu ZQ.: The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochimica Acta, 2010, vol. 55, no. 13, pp. 4148–4161.
  • [8] Nie J.-F.: Precipitation and Hardening in Magnesium Alloys. Metallurgical and Materials Transactions A, 2012, vol. 43, pp. 3891–3939.
  • [9] Nguyen Q.B., Sim Y.H.M., Gupta M., Lim C.Y.H.: Tribology characteristics of magnesium alloy AZ31B and its composites. Tribology International, 2015, vol. 82 B, pp. 464–471.
  • [10] Pawłowski L.: The Science and Engineering of Thermal Spray Coatings. John Wiley & Sons, Ltd., England 2008.
  • [11] Fauchais P.L., Heberlein J.V.R., Boulos M.I.: Thermal Spray Fundamentals: From Powder to Part. Springer, New York 2014.
  • [12] Łatka L., Pawłowski L., Winnicki M., Sokołowski P., Małachowska A., Kozerski S.: Review of functionally graded thermal sprayed coatings. Appl. Sci. 2020, vol. 10, no. 15, 5153.
  • [13] Berger L.M.: Application of hard metals as thermal spray coatings. International Journal Refractory Metals and Hard Materials, 2015, vol. 49, pp. 350–364.
  • [14] Singh V., Singh I., Bansal A., Omer A., Singla A.K., Rampal A., Goyal D.K.: Cavitation erosion behavior of high velocity oxy fuel (HVOF) sprayed (VC + CuNi-Cr) based novel coatings on SS316 steel. Surface and Coatings Technology, 2022, vol. 432, no. 4–5, 128052, pp. 1–15.
  • [15] Praveen A.S., Arjunan A.: High-temperature oxidation and erosion of HVOF sprayed NiCrSiB/Al2O3 and NiCrSiB/WC–Co coatings. Applied Surface Science Advances, 2022, vol. 7, 100191, pp. 1–10.
  • [16] Lima R.S., Marple B.R.: Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: A review. Journal of Thermal Spray Technology, 2007, vol. 16, no. 1, pp. 40–63.
  • [17] Picas J.A., Forn A., Matthäus G.: HVOF coatings as an alternative to hard chrome for pistons and valves. Wear, 2006, vol. 261, no. 5–6, pp. 477–484.
  • [18] Qiao L., Wu Y., Hong S., Long W., Cheng J.: Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceramics International, 2021, vol. 47, no. 2, pp. 1829–1836.
  • [19] Ma N., Guo L., Cheng Z., Wu H., Ye F., Zhang K.: Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure. Applied Surface Science, 2014, vol. 320, pp. 364–371.
  • [20] Chen H., Gou G.Q., Tu M.J., Liu Y.: Structure and wear behaviour of nanostructured and ultrafine HVOF spraying WC-17Co coatings. Surface Engineering, 2009, vol. 25, no. 7, pp. 502–506.
  • [21] Ward L.P., Pilkington A.: The dry sliding wear behavior of HVOF-sprayed WC: Metal composite coatings. Journal of Materials Engineering and Performance, 2014, vol. 23, no. 9, 106062, pp. 3266–3278.
  • [22] Murthy J.K.N., Venkataraman B.: Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes. Surface and Coatings Technology, 2006, vol. 200, no. 8, pp. 2642–2652.
  • [23] Bang S.S., Park Y.C., Lee J.W., Hyun S.K., Kim T.B., Lee J.K., Han J.W., Jung T.K.: Effect of the spray distance on the properties of high velocity oxygen-fuel (HVOF) sprayed WC12Co coatings. Journal of Nanoscience and Nanotechnology, 2018, vol. 18, no. 3, pp. 1931–1934.
  • [24] Berger L.-M., Saaro S., Naumann T., Kašparova M., Zahálka F.: Influence of feedstock powder characteristics and spray processes on microstructure and properties of WC–(W,Cr)2C–Ni hard metal coatings. Surface and Coatings Technology, 2010, vol. 205, no. 4, pp. 1080–1087.
  • [25] Myalska H., Szymański H., Moskal G.: Microstructure and Selected Properties of WC-Co-Cr Coatings Deposited by High Velocity Thermal Spray Processes. Solid State Phenomena, 2016, vol. 246, pp. 117–122.
  • [26] García-Rodríguez S., López A.J., Bonache V., Torres B., Rams J.: Fabrication, Wear, and corrosion resistance of HVOF sprayed WC-12Co on ZE41 magnesium Alloy. Coatings, 2020, vol. 10, no. 5, pp. 1–21.
  • [27] Aulakh S.S., Kaushal G.: Laser texturing as an alternative to grit blasting for improved coating adhesion on AZ91D magnesium alloy. Transactions of the IMF, 2019, vol. 97, no. 2, pp. 100–108.
  • [28] Jonda E., Łatka L., Tomiczek A., Godzierz M., Pakieła W., Nuckowski P.: Microstructure Investigation of WC-Based Coatings Prepared by HVOF onto AZ31 Substrate. Materials, 2022, vol. 15, no. 1, 40, pp. 1–15.
  • [29] Jonda E., Łatka L.: Comparative Analysis of Mechanical Properties of WC-Based Cermet Coatings Sprayed by HVOF onto AZ31 Magnesium Alloy Substrates. Advances in Science and Technology Research Journal, 2021, vol. 15, no. 2, pp. 57–64.
  • [30] Łatka L., Jonda E., Godzierz M., Górnik M., Tomiczek A.: Comparison of microstructure and residual stress of HVOF double carbides coatings de-posited on magnesium substrate. Proceedings of the International Thermal Spray Conference, ITSC 2022, Vienna, pp. 172–178.
  • [31] https://www.hoganas.com/en/powder-technologies/surface-coating/products/hvof/carbides/. Access date: 13.07.2022r.
  • [32] Górnik M., Jonda E., Nowakowska M., Łatka L.: The effect of spray distance on porosity, surface roughness and microhardness of WC-10Co-4Cr coatings deposited by HVOF. Advances in Materials Science, 2021, vol. 21, no. 4, pp. 99–111.
  • [33] Górnik M., Jonda E., Łatka L., Nowakowska M., Godzierz M.: Influence of spray distance on mechanical and tribological properties of HVOF sprayed WC-Co-Cr coatings. Materials Science-Poland, 2021, vol. 39, no. 4, pp. 545–554.
  • [34] Oliver W.C., Pharr G.M.: An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. Journal Materials Research, 1992, vol. 7, pp. 1564–1583.
  • [35] Łatka L., Chicot D., Cattini A., Pawłowski L., Ambroziak A.: Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surface and Coatings Technology, 2013, vol. 220, pp. 131–139.
  • [36] Palmqvist S.: Occurrence of crack formation during Vickers indentation as a measure of the toughness of hard metals. Arch. Eisenhuttenwes, 1962, vol. 33, no. 6, pp. 629–633.
  • [37] Evans A.G., Wilshaw T.R.: Quasi-static solid particle damage in brittle solids – I. Observations, analysis and implications. Acta Metallurgica, 1976, vol. 24, no. 10, pp. 939–956.
  • [38] Luiz L.A., de Andrade J., Pesqueira C.M., de Araujo Fernandes Siqueira I.B., Bavaresco Sucharski G., de Sousa M.J.: Corrosion Behavior and Galvanic Corrosion Resistance of WC and Cr3C2 Cermet Coatings in Madeira River Water. Journal of Thermal Spray Technology, 2021, vol. 30, pp. 205–221.
  • [39] Song B., Murray J.W., Wellman R.G., Pala Z., Hussain T.: Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings. Wear, 2020, vol. 442–443, 203114, pp. 1–10.
  • [40] Fauchais P., Montavon G., Bertrand G.: From powders to thermally sprayed coating. Journal of Thermal Spray Technology, 2010, vol. 19, pp. 56–80.
  • [41] Agüero A., Camón F., Garcıa de Blas J., del Hoyo J.C., Gamo R.M., Santaballa A., Ulargui S., Valles M.P.: HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators. Journal of Thermal Spray Technology, 2011, vol. 20, no. 6, pp. 1292–1309.
  • [42] Murugan K., Ragupathy A., Balasubramanian V., Sridhar K.: Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC-10Co-4Cr coatings. Surface and Coatings Technology, 2014, vol. 247, pp. 90–102.
  • [43] Bolelli G., Berger L.-M., Bonetti M., Lusvarghi L.: Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hard metal coatings. Wear, 2014, vol. 309, no. 1–2, pp. 96–111.
  • [44] Matikainen V., Peregrina S.R., Ojala N., Koivuluoto H., Schubert J., Houdkova Š., Vuoristo P.: Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surface and Coating Technology, 2019, vol. 370, pp. 196–212.
  • [45] de la Barbera Y.Y.S., La Barbera-Sosa J.G., Caro J., Puchi-Cabrera E.S., Staia M.H.: Mechanical properties and microstructure of WC–10Co–4Cr and WC–12Co thermal spray coatings deposited by HVOF. Surface Engineering, 2008, vol. 24, pp. 374–382.
  • [46] Chicot D., Roudet F., Zaoui A., Louis G., Lepingle V.: Influence of visco-elastoplastic properties of magnetite on the elastic modulus: Multicyclic indentation and theoretical studies. Materials Chemistry and Physics, 2010, vol. 119, no. 1–2, pp. 75–81.
  • [47] Wang H., Qiu Q., Gee M., Hou C., Liu X., Song X.: Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder. Materials & Design, 2020, vol. 191, 108586, pp. 1–13.
  • [48] Zhan S.-H., Cho T.-Y., Yoon J.-H., Li M.-X., Shum P.W., Kwon S.-C.: Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-Cr-Ni coatings modified by laser heat treatment. Materials Science and Engineering B, 2009, vol. 162, no. 2, pp. 127–134.
  • [49] Yao H.-L., Yang C., Yi D.-L., Zhang M.-X., Wang H.-T., Chen Q.-Y., Bai X.-B., Ji G.-Ch.: Microstructure and mechanical property of high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings. Surface and Coatings Technology, 2020, vol. 397, 126010, pp. 1–10.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c546666a-3e8e-4bc0-8818-6b2e70cc0a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.