Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol 57, No. 2 | 153--169
Tytuł artykułu

On Banach spaces of regulated functions

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a relatively compact subset S of the real line R, let R(S) denote the Banach space (under the sup norm) of all regulated scalar functions defined on S. The purpose of this paper is to study those closed subspaces of R(S) that consist of functions that are left-continuous, right-continuous, continuous, and have a (two-sided) limit at each point of some specified disjoint subsets of S. In particular, some of these spaces are represented as C(K) spaces for suitable, explicitly constructed, compact spaces K.
Wydawca

Rocznik
Strony
153--169
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland, drewlech@amu.edu.pl
Bibliografia
  • [1] P. Alexandroff and P. Urysohn, Mémoire sure les espaces topologiques compacts, Verh. der Kon. Akad. Wetensch., vol. 14, Amsterdam 1929, pp. VIII+96; translated into Russian and published in book form by Izd. Nauka, Moscow, 1971 (3rd ed.)
  • [2] N. Bourbaki, Fonctions d’une variable rélle, Hermann, Paris 1958.
  • [3] H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15, DOI 10.1090/S0002-9947-1961-0132375-5.
  • [4] J. Dieudonné, Foundations of modern analysis, Academic Press, New York 1960.
  • [5] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa 1977.
  • [6] C. S. Hönig, Volterra Stieltjes-integral equations, North-Holland, Amsterdam 1975.
  • [7] W. Marciszewski, Modifications of the double arrow space and related Banach spaces C(K), Studia Math. 184 (2008), 249-262, DOI 10.4064/sm184-3-4.
  • [8] A. Michalak, On continuous linear operators on D(0,1) with nonseparable ranges, Comment. Math. (Prace Mat.) 43 (2003), 221-248.
  • [9] A. Michalak, The Banach space D(0,1) is primary, Comment. Math. (Prace Mat.) 45 (2005), 111-129, DOI 10.14708/cm.v45i1.5231.
  • [10] W. B. Moors and S. Somasundaram, A Gâteaux differentiability space that is not weak Asplund, Proc. Amer. Math. Soc. 134 (2006), 2745-2754, DOI 10.1090/S0002-9939-06-08402-4.
  • [11] A. J. Ostaszewski, A characterization of compact, separable, ordered spaces, J. London Math. Soc. 7 (1974), 758-760.
  • [12] W. M. Patterson, Complemented co-subspaces of a nonseparable C(K)-space, Math. Bull. 36 (1993), 351-357.
  • [13] Š. Schwabik, Linear operators in the space of regulated functions, Math. Bohem. 117 (1992), 79-92.
  • [14] L. Schwartz, Analyse Mathématique, Hermann, Paris 1967.
  • [15] Z. Semadeni, Banach Spaces of Continuous Functions, vol. I, PWN-Polish Scientific Publishers, Warszawa 1971.
  • [16] M. Talagrand, Renormages de quelques C(K), Israel J. Math. 54 (1986), 327-334.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c4f6fde7-71b7-467a-b637-88bf313fb90d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.