Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 5 | 156--164
Tytuł artykułu

The Influence of Organic Growing of Maize Hybrids on the Formation of Leaf Surface Area and Chlorophyl Concentration

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this study is to establish the impact of tillage (reversible to a depth of 25–28 cm and irreversible to a depth of 25–28, 15–18 and 5–8 cm) and the fertilizing products such as LEANUM and VITAMIN O7 (liquid and powdered, respectively) for growing Hemingway and Harmonium hybrids with FAO 280 and 380 on the leaf area duration (LAD) and the concentration of chlorophyll а and b. The leaf area duration was measured by the method of M. I. Orlovskyi and calculated using the formula. The content of chlorophyll a and b in maize leaves was determined using the ULAB 102 Spectrophotometer. In general, the effect of biofertilizer treatment on the leaf can be noted by increasing the leaf area duration. Thus, for Harmonium, with any variant of tillage, the leaf area duration increased on the variants of foliar treatment. And on irreversible tillage for three years, an increase in the leaf area duration was noted with the use of pre-sowing inoculation with the studied fertilizing products, one treatment with LEANUM foliar, and a combined treatment with LEANUM + 1 LEANUM. It is worth noting that disking to a depth of 5–8 cm only led to a decrease in the leaf area duration during the cultivation of Harmonium. However, when growing Hemingway, almost all variants had a positive effect on the leaf area duration, with the exception of inoculation (when using both fertilizing products). An interesting fact is that in most cases, an increase in the leaf area duration led to a decrease in the concentration of chlorophyll a, but did not lead to a decrease in the total concentration of chlorophylls a and b, due to an increase in the concentration of chlorophyll b. It should be noted that biofertilizer treatment and tillage significantly affected the concentration of chlorophyll a and chlorophylls a and b, but chlorophyll b was not affected by tillage. When growing Hemingway, neither biologics nor tillage had any effect, while other pigments had a significant effect.
Wydawca

Rocznik
Strony
156--164
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • Luhansk Taras Shevchenko National University, Koval Str., 3, Poltava, 36003, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva Str., 160, Sumy, 40021, Ukraine
Bibliografia
  • 1. Ali B., Wang X., Saleem M.H., Hafeez A., Afridi M.S., Khan S., Nisa Z.U., Ullah I., do Amaral Júnior A.T., Alatawi A., Ali S. 2022. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants, 11(3), 345.doi.org/10.3390/ plants11030345
  • 2. Bada M. 2022. Impact of organics and bio–fertilizers on growth attributes of maize (Zea mays L.). Journal of Emerging Technologies and Innovative Research, 8(11), 145–150.
  • 3. Chaudhary P., Khati P., Chaudhary A., Maithani D., Kumar G., Sharma A. 2021. Cultivable and metagenomic approach to study the combined impact of nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizospheric microbiome. PLoS One, 16(4), e0250574.doi.org/10.1371/ journal.pone.0250574
  • 4. Datsko O.M., Zakharchenko E.A. 2022. The characteristics of tillage methods under maize cultivation. Agrarian Innovations, 13, 46–52. https://doi.org/10.32848/agrar.innov.2022.13.7
  • 5. Dudar I.F., Ohorodnyk N.Z., Pavkovych S.Ya., Lytvyn O.F., Dudar Ya.I. 2022. Number of soil bacteria in agrocenose Trifolium pratense depends on the method its processing. In Multidisciplinary scientific notes. Theory, history and practice, 37–39.doi.org/10.46299/ISG.2022.2.6
  • 6. Fitriatin B.N., Ambarita D.D.M., Rochimi M. 2021. The role of rhizobacterial inoculum and formulated soil amendment in improving soil chemical-biological properties, chlorophyll content and agronomic efficiency of maize under marginal soils. Jordan Journal of Biological Sciences, 14(3), 601–605.doi.org/10.54319/jjbs/140329
  • 7. Gao C., El–Sawah A.M., Ali D.F.I., Alhaj Hamoud Y., Shaghaleh H., Sheteiwy M.S. 2020. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy, 10(3), 319.doi.org/10.3390/agronomy10030319
  • 8. Hryhoriv Y., Butenko A., Kozak M., Tatarynova V., Bondarenko O., Nozdrina N., Stavytskyi A., Bordun R. 2022. Structure components and yielding capacity of Camelina sativa in Ukraine. Agriculture and Forestry, 68(3), 93–102. doi:10.17707/ AgricultForest.68.3.07
  • 9. Hryhoriv Y., Lyshenko M., Butenko A., Nechyporenko V., Makarova V., Mikulina M., Bahorka M., Tymchuk D.S., Samoshkina I., Torianyk I. 2023. Competitiveness and advantages of camelina sativa on the market of oil crops. Ecological Engineering & Environmental Technology, 24(4), 97–103.doi.org/10.12912/27197050/161956
  • 10. Hussain I., Khan A., Akbarm H. 2021. Maize growth in response to beneficial microbes. Humic acid and farmyard manure application. Sarhad J. Agric, 37, 1426–1435. https://dx.doi.org/10.17582/journal.sja/2021/37.4.1426.1435
  • 11. Ilchenko V., Trotsenko V., Zhatova H., Kovalenko I. 2019. Pre–sowing bacterial treatment and chemical fertilizer application impact on yield capacity and grain quality of hulless (Avena nuda L.) and hulled oats (Avena sativa L.). Journal of Central European Agriculture, 20(3), 866–875.doi.org/10.5513/ JCEA01/20.3.2296
  • 12. Jalal A., Azeem K., Teixeira Filho M.C.M., Khan A. 2020. Enhancing soil properties and maize yield through organic and inorganic nitrogen and diazotrophic bacteria. Sustainable crop production. In M. Fujita, T. Assis Rodrigues Nogueira M. Hasanuzzaman M. Carvalho Minhoto Teixeira Filho (Eds.), Sustainable Crop Production, 165–178. IntechOpen.doi.org/10.5772/intechopen.92032
  • 13. Kadhim S.H. 2020. Growth and development for maize (Zea mays) as influenced by kinetin and em. Journal of Advanced Agricultural Technologies, 7(2), 43–46.doi.org/10.18178/joaat.7.2.43–46
  • 14. Karbivska U., Butenko A., Kozak M., Filon V., Bahorka M., Yurchenko N., Pshychenko, O., Kyrylchuk, K., Kharchenko, S., Kovalenko I. 2023. Dynamics of productivity of leguminous plant groups during long-term use on different nutritional backgrounds. Journal of Ecological Engineering, 24(6), 190–196.doi.org/10.12911/22998993/162778
  • 15. Karbivska U., Kurgak V., Gamayunova V., Butenko A., Malynka L., Kovalenko I., Onychko V., Masyk I., Chyrva A., Zakharchenko E., Tkachenko O., Pshychenko O. 2020. Productivity and quality of diverse ripe pasture grass fodder depends on the method of soil cultivation. Acta Agrobotanica, 73(3), 1–11.doi.org/10.5586/aa.7334
  • 16. Karpenko O., Butenko Y., Rozhko V., Sykalo О., Chernega T., Kustovska A., Onychko V., Tymchuk D.S., Filon V., Novikova A. 2022. Influence of agricultural systems on microbiological transformation of organic matter in wheat winter crops on typical black soils. Journal of Ecological Engineering, 23(9), 181–186.doi.org/10.12911/22998993/151885
  • 17. Kerubo F.N., Okello S.V., Oluko P.S. 2021. Effective microorganism effect on the growth and yield of spider plant (Cleome gynandra L.). Journal of Agriculture and Veterinary Science, 14(11), 45–56.doi.org/10.9790/2380–1411024556
  • 18. Khanna R., Pawar J., Gupta S., Verma H., Trivedi H., Kumar P., Kumar, R. 2019. Efficiency of biofertilizers in increasing the production potential of cereals and pulses: A review. Journal of Pharmacognosy and Phytochemistry, 8(2), 183–188.
  • 19. Kots S.Y., Rybachenko L.I., Khrapova A.V., Kukol K.P., Rybachenko O.R., Кhomenko Y.O. 2022. Composition of pigment complex in leaves of soybean plants, inoculated by Bradyrhizobium japonicum, subject to metal nanocarboxylates and various–levels of water supply. Biosystems Diversity, 30(1), 80–87.doi.org/10.15421/012208
  • 20. Kovalenko V., Kovalenko N., Gamayunova V., Butenko A., Kabanets V., Salatenko I., Vandyk, M. 2024. Ecological and technological evaluation of the nutrition of perennial legumes and their effectiveness for animals. Journal of Ecological Engineering, 25(4), 294–304.doi.org/10.12911/22998993/185219
  • 21. Li G.E., Kong W.L., Wu X.Q., Ma S.B. 2021. Phytase–Producing Rahnella aquatilis JZ–GX1 Promotes Seed Germination and Growth in Corn (Zea mays L.). Microorganisms, 9(8), 1647.doi.org/10.3390/microorganisms9081647
  • 22. Malynovska I., Borko Yu. 2021. Influence of agrotechnical measures on chlorophyll activity of soybean plants. Visnyk agrarnoi nauky, 2(815), 19–25.doi.org/10.31073/agrovisnyk202102–03
  • 23. Naik K., Mishra S., Srichandan H., Singh P.K., Choudhary A. 2020. Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustain Environ Res, 30(10).doi.org/10.1186/s42834–020–00051–x
  • 24. Palamarchuk V.D. 2019. Root fertilizing influence on the chlorophyll contents in maize hybrids in the different groups of maturity. Silske hospodarstvo ta lisivnytstvo: zb. nauk. pr. VNAU, 14, 43–53.
  • 25. Pohromska Ya.A. 2019. The microbiological activity of chernozem ordinary depending on the technological load of the soil. Visnyk Umanskogo natsionalnoho universytetu sadivnytstva, 2, 33–38.doi.org/10.31395/2310–0478–2019–2–33–38
  • 26. Pysarenko P.V., Biliaieva I.M., Piliarskyi V.H., Piliarska O.O. 2015. Photosynthetic potential of corn plants depending on growing conditions. Myronivskyi Visnyk, (1), 243–251.
  • 27. Radchenko M., Trotsenko V., Butenko A., Masyk I., Bakumenko O., Butenko S., Dubovyk O., Mikulina M. 2023. Peculiarities of forming productivity and quality of soft spring wheat varieties. Agriculture and Forestry, 69(4), 19–30.doi.org/10.17707/ AgricultForest.69.4.02
  • 28. Raymond N.S., Gómez Muñoz B., Bom F.J., Nybroe O., Jensen L.S., Müller Stöver D.S., Oberson A., Richardson A.E. 2021. Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytologist, 229(3), 12681277. doi.org/10.1111/nph.16924
  • 29. Rieznik S., Havva D., Butenko A., Novosad K. 2021. Biological activity of chernozems typical of different farming practices. Agraarteadus, 32(2), 307–313.doi.org/10.15159/jas.21.34.
  • 30. Savchuk M., Lisovyi M., Taran O., Chechenieva T., Starodub M. 2018. Influence of presowing treatment with nanocomposites upon photosynthetic apparatus of hybrid of corn. Visnyk Agrarnoi Nauky, 5(782), 32–35.doi.org/10.31073/agrovisnyk201805–05
  • 31. Shelest M., Kalnaguz A., Datsko O., Zakharchenko E., Zubko V. 2023. System of pre-sowing seed inoculation. Scientific Horizons, 26(7), 140–148.doi.org/10.48077/scihor7.2023.140
  • 32. Silva P.S.T., Cassiolato A.M.R., Galindo F.S., Jalal A., Nogueira T.A.R., Oliveira, C.E.D.S., Filho M.C.M.T. 2022. Azospirillum brasilense and zinc rates effect on fungal root colonization and yield of wheat-maize in tropical Savannah conditions. Plants, 11(22), 3154.doi.org/10.3390/ plants11223154
  • 33. Sousa S.M., Oliveira C.A., Andrade D.L., Carvalho C.G., Ribeiro V.P., Pastina M.M., Marriel I.E., Paula Lana U.G., Gomes E.A. 2021. Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. Journal of Plant Growth Regulation, 40(2), 867–877.doi.org/10.1007/s00344–020–10146–9
  • 34. Stępień–Warda A. 2020. Effect of soil cultivation system on the efficiency of the photosynthetic apparatus in maize leaves (Zea mays L.). Polish Journal of Agronomy, 43, 57–62.doi.org/10.26114/pja.iung.445.2020.43.05
  • 35. Sun J., Gao J., Wang Z., Hu S., Zhang F., Bao H., Fan Y. 2018. Maize canopy photosynthetic efficiency, plant growth, and yield responses to tillage depth. Agronomy, 9(1), 3.doi.org/10.3390/agronomy9010003
  • 36. Talaat N.B. 2019. Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Scientia Horticulturae, 250, 254–265.doi.org/10.1016/j.scienta.2019.02.052
  • 37. Trotsenko V., Kabanets V., Yatsenko V., Kolosok І. 2020. Models of sunflower productivity formation and their efficiency in the conditions of the north-eastern Forest-Steppe of Ukraine. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 40(2), 72–78.doi.org/10.32782/agrobio.2020.2.9
  • 38. Tsyuk O., Tkachenko M., Butenko A., Mishchenko Y., Kondratiuk I., Litvinov D., Tsiuk Y., Sleptsov Y. 2022. Changes in the nitrogen compound transformation processes of typical chernozem depending on the tillage systems and fertilizers. Agraarteadus, 33(1), 192–198.doi.org/10.15159/jas.22.23.
  • 39. Zabolotna A.V., Zabolotnyi O.I., Rozborska L.V., Zhilyak I.D., Datsenko A.A. 2021. Vmist pihmentiv i chysta produktyvnist fotosyntezu kukurudzy za vykorystannia rehuliatoriv rostu roslyn. Bulletin of Sumy National Agrarian University. The series: Agronomy and Biology, 46(4), 9–15.doi.org/10.32845/agrobio.2021.4.2
  • 40. Zakharchenko E., Datsko O., Mishchenko Y., Melnyk A., Kriuchko L., Rieznik S., Hotvianska A. 2023. Efficiency of biofertilizers when growing corn for grain. Modern Phytomorphology, 17, 50–56.doi.org/10.5281/zenodo.7966053
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c4f53820-0bcb-4740-af66-5bf9e9e8b065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.