Czasopismo
2012
|
R. 88, nr 9b
|
238-241
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Niskotemperaturowa mikrofalowa mikroplazma do biodekontaminacji
Języki publikacji
Abstrakty
This paper presents results of the investigations of an atmospheric pressure Ar and Ar/O2 microwave (2.45 GHz) microplasmas which can be used in the biomedical applications. The microplasma in the form of a column was generated using a simple, coaxial microwave microplasma source (MMS). The gas temperature at the microplasma tip was as low as about 300 K. This makes the microwave microplasma suitable for many applications, including bio-medical. Preliminary test with Escherichia coli K-25 indicated antibacterial effect of Ar and Ar/O2 microplasmas.
Prezentowana mikrofalowa (2,45 GHz) mikroplazma Ar oraz Ar/O2 może znaleźć zastosowanie w medycynie, np. przy dezynfekcji. Mikroplazmę w kształcie kolumny wytwarza prostej konstrukcji, współosiowy mikrofalowy generator mikroplazmy. Temperatura na szczycie kolumny mikroplazmy jest niska, rzędu 300 K. To czyni mikroplazmę użyteczną do zastosowań w medycynie. Wstępne testy z użyciem bakterii Escherichia coli K-25 wskazują na antybakteryjne działanie mikroplazmy Ar i Ar/O2.
Czasopismo
Rocznik
Tom
Strony
238-241
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
- The Szewalski Institute of Fluid Flow Machinery Gdańsk, Centre for Plasma and Laser Engineering, jmiz@imp.gda.pl
- Gdynia Maritime University, Faculty of Marine Electrical Engineering, Department of Marine Electronics
autor
- The Szewalski Institute of Fluid Flow Machinery Gdańsk, Centre for Plasma and Laser Engineering, bhrycka@imp.gda.pl
autor
- The Szewalski Institute of Fluid Flow Machinery Gdańsk, Centre for Plasma and Laser Engineering, mj@imp.gda.pl
autor
- The Szewalski Institute of Fluid Flow Machinery Gdańsk, Centre for Plasma and Laser Engineering
Bibliografia
- [1] Becker K.H., Kogelschatz U., Schoenbach K.H., Barker R.J., Non-Equilibrium Air Plasmas at Atmospheric Pressure, IOP Publishing, Bristol, 2005
- [2] Fridman A., Plasma Chemistry, Cambridge University Press, New York, 2008
- [3] Kawai Y., Ikegami H., Sat o N., Matsuda A., Uchino K., Kuzuya M., Mizuno A., Industrial Plasma Technology, WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, 2010
- [4] Bogaerts A., Neyts E., Gijbels R., van der Mullen J., Gas discharge plasmas and their applications, Spectrochim. Acta Part B, 57 (2002), No. 4, 609-658
- [5] Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P., Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B, 61 (2006), No. 1, 2-50
- [6] Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke Th., Brandenburg R., von dem Hagen T., Wel tmann K.-D., Low temperature atmospheric pressure plasma sources for microbial decontamination, J. Phys. D: Appl. Phys., 44 (2011), No. 1, 013002-013002-18
- [7] Lee H.W., Park G.Y., Seo Y.S., Im Y.H., Shim S.B., Lee H.J., Modelling of atmospheric pressure plasmas for biomedical applications, J. Phys. D: Appl. Phys., 44 (2011), No. 5, 053001- 053001-27
- [8] Choi J.H., Han I., Baik H.K., Lee M.H., Han D.-W., Park J.-C., L e e I.-S., Song K.M., Lim Y.S., Analysis of sterilization effect by pulsed dielectric barrier discharge, J. Electrostat., 64 (2006), No. 1, 17-22
- [9] Xu L., Terashita F., Nonaka H., Ogino A., Nagata T., Koide Y., Nanko S., Kurawak i I., Nagatsu M., Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization, J. Phys. D: Appl. Phys., 39 (2006), No. 1, 148–152
- [10] Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L'.H., Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms, Int. J. Pharm., 226 (2001), No. 1-2, 1-21
- [11] von Keudell A., Awakowicz P., Benedikt J., Raballand V., Yanguas-Gil A., Opretzka J., Flotgen C., Reuter R., Byelykh L., Halfmann H., Stapelmann K., Denis B., Wunderlich J., Muranyi P., Rossi F., Kylian O., Has iwa N., Ruiz A., Rauscher H., S i rghi L., Comoy E., Dehen C., Challier L., Deslys J.P., Inactivation of Bacteria and Biomolecules Low-Pressure Plasma Discharges, Plasma Process Polym., 7 (2011), No. 3-4, 327–352
- [12] Lee K.-Y., Park B.J., Lee D.H., Lee I.-S., Hyun S.O., Chung K.-H., Park J.-C., Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure, Surf. & Coat. Technol., 193 (2005), No. 1-3, 35-38
- [13] Laroussi M., Leipold F., Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure, Int. J. Mass Spectrom., 233 (2004) , No. 1-3, 81-86
- [14] Yang L., Chen J., Gao J., Guo Y., (2009) Plasma sterilization using the RF glow discharge, Appl. Surf. Sci., 255 (2009), No. 22, 8960–8964
- [15] Sato T., Fujioka K., Ramasamy R., Urayama T., Fujii S., Sterilization Efficacy of a Coaxial Microwave Plasma Flow at Atmospheric Pressure, IEEE Trans. on Industry Appl., 42 (2006), No. 2, 399-404
- [16] Nastuta A.V., Topala I., G rigoras C., Pohoata V., Popa G., Stimulation of wound healing by helium atmospheric pressure plasma treatment, J. Phys. D: Appl. Phys., 44 (2011), No. 10, 105204-105204-9
- [17] Goc h M, Jasiński M, Mizeraczyk J, Zakrzewski Z., Microwave Microdischarge Generator Based on Coaxial Line, Przegląd Elektrotechniczny, 84 (2008), nr 3, 80-82
- [18] Jasiński M, Kroplewski L, Zakrzewski Z, Mizeraczyk J (2008) Atmospheric Pressure Microwave Microplasma Sources. Chemicke Listy, 102 (2008), S1322-S1326
- [19] Jasiński M., Zakrzewski Z., Mizeraczyk J., New Atmospheric Pressure Microwave Microplasma Source, Acta Technica CSAV, 53 (2008), 347-354
- [20] Hrycak B., Jasiński M., Mizeraczyk J., Spectroscopic investigations of microwave microplasmas in various gases at atmospheric pressure, Eur. Phys. J. D, 60 (2010), No. 3, 609-619
- [21] Griem H.R., Spectral Line Broadening by Plasmas, Academic Press, New York, 1974
- [22] Gigosos M.A., Cardenoso V., New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics n.20, J. Phys. B: At. Mol. Opt. Phys., 29 (1996), No. 20, 4795
- [23] http://www.specair-radiation.net Accessed 7 September 2011
- [24] http://www.nist.gov/pml/data/asd.cfm Accessed 7 September 2011
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c4e8a4de-6b39-4789-934e-53041fa689bb