Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 8 | 143--154
Tytuł artykułu

Magnetic Composite for Efficient Adsorption of Iron and Manganese Ions from Aqueous Solution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iron Fe(III) and Manganese Mn(II) ions were effectively removed from aqueous solutions using a magnetic composite of Fe3O4/CaO/PDA, with CaO sourced from green mussel. The composite material was comprehensively characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive – X-ray Spectroscopy (SEM-EDS), Brunauer, Emmett and Teller (BET) surface area analysis, Vibrating Sample Magnetometer (VSM). The impact of physicochemical adsorption parameters, such as solution pH, contact time, and concentration, were investigated. The Fe3O4/CaO/PDA composite displayed a value of 51.47 emu/g in saturation magnetization, enabling rapid separation through the use of an external magnet without the need for filtration. Optimal conditions for adsorbing Fe(III) ions were achieved at pH 3 and initial concentration of 400 mg/L with maximum efficiency reach after 60 minutes. Similarly, optimal conditions for Mn(II) ion adsorption were observed at pH 4 with the same contact time and initial concentration. The adsorption efficiencies were found to be 88.56% for Fe(III) and 75.65% for Mn(II). The pseudo-second-order model aptly depicted the kinetics associated with the adsorption of both types of ions while the Langmuir isotherm model indicated that monolayer adsorption takes place on the composite’s surface. The maximum capacities for adsorption is 322.58 mg/g for Fe(III) ions and 208.33 mg/g for Mn(II) ions. A negative Gibbs free energy value affirmed that the process occurs spontaneously under natural conditions. These results underscored the potential use of this Fe3O4/CaO/PDA composite in treating wastewater to remove heavy metal ions.
Słowa kluczowe
Wydawca

Rocznik
Strony
143--154
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Doctoral Program, Faculty Mathematics and Natural Sciences, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30862, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30862, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30862, Indonesia
  • Doctoral Program, Faculty Mathematics and Natural Sciences, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30862, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30862, Indonesia, puji_lukitowati@mipa.unsri.ac.id
Bibliografia
  • 1. Aguila-Almanza, E., Hernandez-Cocoletzi, H., Rubio-Rosas, E., Calleja-Gonzales, M., Lim, H.R., Khoo, K.S., Singh, V., Maldonado-Montiel, J.C., Show, P.L. 2022. Recuperation and characterization of calcium carbonate from residual oyster and clamshells and their incorporation into a residential finish. Chemosphere, 288, 1–9.
  • 2. Ambiado, K., Bustos, C., Schwarz, A., Bórquez, R. 2017. Membrane technology applied to acid mine drainage from copper mining. Water Science & Technology, 75, 705–715.
  • 3. Anbia, M., Amirmahmoodi, S. 2016. Removal of Hg(II) and Mn(II) from aqueous solution using nanoporous carbon impregnated with surfactants. Arabian Journal of Chemistry, 9(1), S319–S325.
  • 4. Ates, A. 2014. Role of modification of natural zeolite in removal of manganese from aqueous solutions. Powder Technology, 264, 86–95.
  • 5. Ayodeji, A.A., Blessing, I.E., Sunday, F.O. 2018. Data on calcium oxide and cow bone catalysts used for soybean biodiesel production. Data in Brief, 18, 512–517.
  • 6. Bakalár, T., Kaˇnuchová, M., Girová, A., Pavolová, H., Hromada, R., Hajduová, Z. 2020. Characterization of Fe(III) adsorption onto zeolite and bentonite. International Journal of Environmental Research and Public Health, 17, 1–13.
  • 7. Brishti, R.S., Kundu, R., Habib, Md. A., Ara, M.H. 2023. Adsorption of iron(III) from aqueous solution onto activated carbon of a natural source: Bombax ceiba fruit shell. Results in Chemistry, 5, 1–6.
  • 8. Buasri, A., Chaiyut, N., Laryuenyong, V., Worawanitchaphng, P., Trongyong, S. 2013. Calcium oxide derived from waste shells of Mussel, Cockle, and Scallop as the heterogeneous catalyst for biodiesel production. The Scientific World Journal, 2013, 1–8.
  • 9. Chen, D., Wang, G., Chen, C., Feng, Z., Jiang, Y., Yu, H., Li, M., Chao, Y., Tang, Y., Wang, S., Qiu, R. 2023. Membrane technology applied to acid mine drainage from copper mining. Journal of Hazardous Materials, 454, 1–18.
  • 10. Chouchane, T., Boukari, A., Khireddine, O., Chibani, S., Chouchane, S. 2023. Equilibrium, kinetics, and thermodynamics of batch adsorption of Mn(II) ions on blast furnace slag (BFS) and kaolin (KGA). Journal of Engineering and Applied Science, 70(58), 1–20.
  • 11. Dai, J. Ren, F., Tao, C.Y. 2012. Adsorption behavior of Fe(II) and Fe(III) ions on thiourea cross-linked chitosan with Fe(III) as template. Molecules, 17, 4388–4399.
  • 12. Deng, D., Weidhaas, J.L., Lin, L.S. 2016. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewa ter and acid mine drainage. Journal of Hazardous Materials, 305, 200–208.
  • 13. Duan, Z., Zhang, W., Lu, M., Shao, Z., Huang, W., Li, J., Li, Y., Mo, J., Li, Y., Chen, C. 2020. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol. Carbon, 167, 351–363.
  • 14. El Shahawy, A., Mubarak, M.F., El Shafied, M., Abdulla, H.M. 2022. Fe(III) and Cr(VI) ions’ removal using AgNPs/GO/chitosan nanocomposite as an adsorbent for wastewater treatment. RSC Advances, 12, 17065–17084.
  • 15. Favere, V.T., Laus, R., Laranjeira, M.C.M., Martins, A.O., Pedrosa, R.C. 2004. Use of chitosan microspheres as remedial material for acidity and iron (III) contents of coal mining wastewaters. Environmental Technology, 25(8), 861–866.
  • 16. Hamestera, M.R.R., Balzera, P.S., Becker, D. 2012. Characterization of calcium carbonate obtained from Oyster and Mussel shells and incorporation in polypropylene. Materials Research, 15(2), 204–208.
  • 17. Hariani, P.L, Said, M., Rachmat, A., Sari, S.P. 2021. Hydroxyapatite-PEG/Fe3O4 composite for adsorption of phenol from aqueous solution. Polish Journal of Environmental Studies, 30(2), 1621–1629.
  • 18. Hossain, M., Muntaha, N., Goni, L.K.M.O., Jamal, M.S., Gafur, M.A., Islam, D., Fakhruddin, A.N.M. 2021. Triglyceride conversion of waste frying oil up to 98.46% using low concentration K+/CaO Catalysts Derived from Eggshells. ACS Omega, 2021, 6(51), 35679–35691.
  • 19. Hossain, Md.S., Jahan, S.A., Ahmed, S. 2023. Crystallographic characterization of bio-waste material originated CaCO3, green-synthesized CaO and Ca(OH)2. Results in Chemistry, 5, 1–8.
  • 20. Kasirajan, R., Bekele, A., Girma, E. 2022. Adsorption of lead (Pb-II) using CaO-NPs synthesized by solgel process from hen eggshell: Response surface methodology for modeling, optimization and kinetic studies. South African Journal of Chemical Engineering, 40, 209–229.
  • 21. Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P., Humaidi, S. 2021. Data on characterization, model, and adsorption rate of banana peel activated carbon (Musa Acuminata) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe). Data in Brief, 39, 1–9.
  • 22. Keshavarza, M., Foroutanb, R., Paparic, F., Bulgariud, L., Esmaeili, H. 2020. Synthesis of CaO/Fe2O3 nanocomposite as an efficient nanoadsorbent for the treatment of wastewater containing Cr (III). Separation Science and Technology, 56(8), 1328–1341.
  • 23. Kobielska, P.A., Howarth, A.J., Farha, O.K., Nayak, S. 2018. Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92–107.
  • 24. Kulawong S., Kulawong, J. 2018. Adsorpstion efficiency of Fe(III) from solution by Zeolite Y synthesized from rice husk. Naresuan University Journal: Science and Technology, 26, 144–156.
  • 25. Legodi, M.A., De Waal, D., Potgieter, J.H., Potgieter, S.S. 2001. Rapid determination of CaCO3 in mixtures utilizing FT–IR spectroscopy. Minerals Engineering, 14(9), 1107–1111
  • 26. Li, J., Han, W., Liu. H., Su, M., Chen, D., Song, G. 2023. Simultaneous removal of Cs(I) and U(VI) by a novel magnetic AMP/PDA/Fe3O4 composite. Journal of Cleaner Production, 409, 1–11.
  • 27. Masindi, V., Gitari, M.W., Tutu, H., De Beer, M., 2015. Passive remediation of acid mine drainage using cryptocrystalline magnesite: a batch experimental and geochemical modelling approach. Water SA, 41(5), 677–682.
  • 28. Mansoor, S.J., Abbasitabar, F. 2020. Adsorption behavior of Fe(II) and Fe(III) ions on polyaniline coated sawdust: batch and fixed–bed studies. Acta Chimica Slovenica, 67, 36–46.
  • 29. Menzel, K., Barros, L., Garcia, A., Ruby-Figueroa, Estay, H. 2021. Metal sulfide precipitation coupled with membrane filtration process for recovering copper from acid mine drainage. Separation and Purification Technology, 270, 1–13.
  • 30. Miri, Z., Elhami, S., Zare-Shahabadi, V., Jahromi, H.J. 2021. Fe3O4/PDA/PANI core–shell nanocomposites as a new adsorbent for simultaneous preconcentration of Tartrazine and Sunset Yellow by ultrasonic-assisted dispersive micro solid-phase extraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 262, 1–9.
  • 31. Moghadam, M.R., Nasirizadeh, N., Dashti, Z., Babanezhad, E. 2013. Removal of Fe(II) from aqueous solution using pomegranate peel carbon: equilibrium and kinetic studies. International Journal of Industrial Chemistry, 4(19), 1–6.
  • 32. Mohamed, M., Yusup, S., Bustam, M.A. 2016. Synthesis of CaO-based Sorbent from Biomass for CO2 Capture in Series of Calcination-carbonation Cycle. Procedia Engineering, 148,78–85.
  • 33. Mokgehle, T.M., Tavengwa, N.T. 2021. Recent developments in materials used for the removal of metal ions from acid mine drainage. Applied Water Science, 11(42), 1–11.
  • 34. Mostofa, S., Jahan, S.A., Saha, B., Sharmin, N., Ahmed, S. 2022. Kinetic and thermodynamic investigation on adsorption of lead onto apatite extracted from mixed fish bone. Environmental Nanotechnology, Monitoring & Management, 18, 1–11.
  • 35.Ngah, W.S.W., Ab Ghani, S., Kamari, A. 2005. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96, 443–450.
  • 36. Nunez-Gomez, D., Rodrigues, C., Lapolli, F.R., Lobo-Recio, M.A. 2019. Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7, 1–10.
  • 37. Peng, H., Guo, J., Wang, B. 2020. Adsorption behavior of Fe(III) in aqueous solution on melamine. Water Science & Technology, 82(9), 1848–1857.
  • 38. Purwaningrum, W., Hasanudin, H., Rachmat, A., Riyanti, F., Hariani, P.L. 2022. Modification of calcium oxide from Green Mussel Shell with iron oxide as a potential adsorbent for the removal of iron and manganese ions from acid mine drainage. Journal of Ecological Engineering, 23(11), 188–201.
  • 39. Reiad, N.E., Salam, O.E.A., Abadir, E.F., Harraz, F.A. 2012. Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane. Journal of Environmental Sciences, 24(8), 1425–1432.
  • 40. Ren, J., Zheng, L., Su, Y., Meng, P., Zhou, Q., Zeng, H., Zhang, T., Yu, H. 2022. Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 445, 1–14.
  • 41. Sheibani, A., Shishehbor, M.R., Alaei, H. 2012. Removal of Fe(III) ions from aqueous solution by hazelnut hull as an adsorbent. International Journal of Industrial Chemistry, 3(4), 1–4.
  • 42. Shi, S., Xu, C., Dong, Q., Wang, Y., Zhu, S., Zhang, X., Chow, Y.T., Wang, X., Zhu, L., Zhang, G., Xu, D. 2021. High saturation magnetization MnO2PDA/Fe3O4 fibers for efficient Pb(II) adsorption and rapid magnetic separation. Applied Surface Science, 541, 1–11.
  • 43. Stylianou, M., Montel, E., Zissimos, A., Christoforou, I., Dermentzis, K., Agapiou, A. 2022. Removal of toxic metals and anions from acid mine drainage (AMD) by electrocoagulation: The case of North Mathiatis open cast mine. Sustainable Chemistry and Pharmacy, 29, 1–13.
  • 44. Thakur, S., Singh, S., Pal, B. 2021. Superior adsorption removal of dye and high catalytic activity for transesterification reaction displayed by crystalline CaO nanocubes extracted from mollusc shells. Fuel Processing Technology, 213, 1–9.
  • 45. Touqeer, T., Mumtaz, M.W., Mukhtar, H., Irfan, A., Akram, S., Shabbir, A., Rashid, U., Nehdi, I.A., Choong, TSY 2020. Fe3O4-PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization. Energies, 13(17), 1–19.
  • 46. Valente, T., Grande, J.A., de la Torre, M.L., Gomes, P., Santisteban, M., Borrego, J., Braga, M.A.S. 2015. Mineralogy and geochemistry of a clogged mining reservoir affected by historical acid mine drainage in an abandoned mining area. Journal of Geochemical Exploration, 157, 66–76.
  • 47. Wang, T., Chen, P., Li, M., Luo, X., Liu, L., Zeng, G., Jiang, J., Huang, K., Xu, X., Li, S., Jiang, H. 2019. Synthesis of La2 (C2O4)3 nanoprisms decorated with Fe3O4/m(ZrO2-CeO2) nanospheres and their application for effective fluoride removal. Journal of Chemical Technology and Biotechnology, 94(11), 3650–3660.
  • 48. Yang, H., Ding, H., Zhang, X., Luo, X., Zhang, Y. 2019. Immobilization of dopamine on Aspergillus niger microspheres (AM/PDA) and its effect on the U(VI) adsorption capacity in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 1–10.
  • 49. Xu, Q., Yue, Z., deng, R., Wang, X., Chuai, X., Zhang, K., Wang, J. 2023. Process and mechanism of recovering layered double hydroxides (LDHs) from acid mine drainage (AMD) and synergetic removal of manganese. Journal of Environmental Chemical Engineering, 11(5), 1–12.
  • 50. Yang, M., Lu, C., Quan, X., Cao, D. 2021. Mechanism of acid mine drainage remediation with steel slag: a review. ACS Omega, 6(45), 30205–30213.
  • 51. Zhou, G., Wang, Q., Song, R., Li, S., Yang, S., Zhang, Q. 2023. Synthesis of core-double-shell structured Fe3O4 /PDA/HKUST-1: Characterization analysis and adsorption performance on cationic MB dyes. Journal of Physics and Chemistry of Solids, 172, 1–11.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c4b6949c-524d-444e-847b-b7757da0ec75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.