Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 3 | 514--525
Tytuł artykułu

Experimental investigation into the tensile strength post-repair on damaged aluminium 2024 - T3 plates using hybrid bonding/riveting

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the implementation of repair processes by composite patch bonding, this process has consistently demonstrated high performance across various industrial sectors, especially in the fields of aeronautics, aerospace and civil engineering. Consequently, there are situations in which the riveting process becomes the sole solution, particularly when the structure is subjected to severe mechanical or thermo-mechanical stresses, since adhesives have low mechanical strength after aging. Each method has its own set of advantages and disadvantages. The current trend is to combine these two processes to minimise their drawbacks as much as possible. The objective of this work is to present an experimental study on the repair of an aluminium plate AL2024-T3 with a central circular notch using a patch of different nature (metal or composite), under tensile loading conditions. The repair composite considered is a carbon/epoxide. The results of the tensile tests showed that the repair by the combination of the two processes improves the mechanical strength of the damaged structure. A comparison of the results of the experimental curves obtained on riveted, bonded and hybrid assemblies has been taken into consideration.
Słowa kluczowe
Wydawca

Rocznik
Strony
514--525
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Research Unit: Materials, Processes and Environment (UR/MPE), M’Hamed Bougara University of Boumerdes, Cité Frantz Fanon, 35000 Boumerdes, Algeria, abdelkrimerah@univ-boumerdes.dz
autor
  • Laboratory of Mechanics of Structures and Solids, LMSS, Mechanical Engineering Department, Djillali Liabes University of Sidi-Bel-Abbes, BP 89 Sidi Bel Abbes 22000, Algeria, a.houari@univ-boumerdes.dz
  • Laboratory of Motor Dynamics and Vibroacoustic (LDMV), Mechanical Engineering Department, M’Hamed Bougara University of Boumerdes, , Cité Frantz Fanon, 35000, Boumerdes, Algeria
  • Laboratory of Mechanics of Structures and Solids, LMSS, Mechanical Engineering Department, Djillali Liabes University of Sidi-Bel-Abbes, BP 89 Sidi Bel Abbes 22000, Algeria, koumad10@yahoo.fr
  • Laboratory of Mechanics of Structures and Solids, LMSS, Mechanical Engineering Department, Djillali Liabes University of Sidi-Bel-Abbes, BP 89 Sidi Bel Abbes 22000, Algeria, belhouari@yahoo.com
  • Laboratory of Materials and Structural Mechanics (LMMS), Mechanical Engineering Department, Mohamed Boudiaf University-M'sila, BP 166 M’sila 28000, Algeria, salah.amroune@univ-msila.dz
  • Laboratory of Motor Dynamics and Vibroacoustic (LDMV), Mechanical Engineering Department, M’Hamed Bougara University of Boumerdes, , Cité Frantz Fanon, 35000, Boumerdes, Algeria, a.chellil@univ-boumerdes.dz
  • Research Unit: Materials, Processes and Environment (UR/MPE), M’Hamed Bougara University of Boumerdes, Cité Frantz Fanon, 35000 Boumerdes, Algeria, yahiacherifzine@gmail.com
  • Laboratory of Materials and Structural Mechanics (LMMS), Mechanical Engineering Department, Mohamed Boudiaf University-M'sila, BP 166 M’sila 28000, Algeria, raulcampilho@gmail.com
  • ISEP – School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal *****INEGI – Pólo FEUP, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Bibliografia
  • 1. Phyo AM, Hirohito K, Mikihito H. Fatigue-performance improvement of patch-plate welding via PWHT with induction heating. Journal of Constructional Steel Research. 2019;160(3):280–288. https://doi:10.1016/j.jcsr.2019.05.047
  • 2. D’Aniello M, Portioli F, Fiorino L, Landolfo R. Experimental investiga-tion on shear behaviour of riveted connections in steel structures. Eng. Struct. 2011; 33(2):516–531. https://doi:10.1016/j.engstruct.2010.11.010
  • 3. Ishikawa T, Ikeda T. Patch Plate Repair Method for Steel Structures Combining Adhesives and Stud Bolts. International Journal of Steel Structures. 2018;18:1410–1419. https://doi.org/10.1007/s13296-018-0149-0
  • 4. Chen ZY, Gu XL, Zhao XL, Ghafoori E. Fatigue Tests on Fe-SMA Strengthened Steel Plates Considering Thermal Effects. Publication: Journal of Structural Engineering. 2022;149(3). https://doi.org/10.1061/JSENDH.STENG-11694
  • 5. Ghafoori E, Dahaghin H, Diao Ch, Pichler N, Li L, Ding J, Ganguly S, Williams S. Metal 3D-Printing for Repair of Steel Structures. Pro-ceedings in civil engineering. 2022;796-801. https://doi.org/10.1002/cepa.2285.
  • 6. Tolga D, Costas S. Recent developments in advanced aircraft alu-minium alloys. Materials & Design. 2014;56(1):862–871. https://doi:10.1016/j.matdes.2013.12.002.
  • 7. Nayak NV. Composite materials in aerospace design. Mater. Des. 2014; 4(9): 1–10.
  • 8. Baker A. Bonded composite repair of fatigue-cracked primary aircraft structure. Compos. Struct. 1999;47(1):431-443. https://doi: 10.1016/S0263-8223(00)00011-8
  • 9. Baker A, Rose A, L. R. F and Jones R. Advances in the Bonded Composite Repair of Metallic Aircraft Structur. 1ère ed. Netherlands. Elsevier Science. 2002. ISBN: 0-08-042699-9.
  • 10. Hosseini-Toudeshky H, Sadeghi G, Daghyani HR. Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass/epoxy composite patches. 2005; 71(3-4): 401–406. http://doi:10.1016/j.compstruct.2005.09.032.
  • 11. Khalili SMR, Ghadjar R, Sadeghinia M, Mittal RK. An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches. Composite Struc-tures.2008; 489(2): 270-274. http://doi:10.1016/j.compstruct.2008.07.032
  • 12. Maleki HN, Chakherlou TN. Investigation of the Effect of Bonded Composite Patch on the Mixed-Mode Fracture Strength and Stress Intensity Factors for an Edge Crack in Aluminum Alloy 2024-T3 Plates. Journal of Reinforced Plastics and Composites.2017; 36(15): 1074-1091. http://doi:10.1177/0731684417702001
  • 13. Basaid D, Benmounah A, Aribi Ch, May A. Experimental study of repair of aircraft structures by adhesive patches based on epoxy and fiberglass. Journal of Materials and Engineering Structures. 2019; 6(3):409–426.
  • 14. Gu J-U, Yoon H-S, Choi N-S. Caractérisation de l'émission acous-tique d'une plaque d'aluminium crantée réparée avec un patch en fi-bre composite. Composites Part A: Applied Science and Manufactur-ing. 2012;43(12):2211–2220. http://doi:10.1016/j.compositesa.2012.07.018
  • 15. Benkheira A, Belhouari M, Benbarek S. Comparison of Double- and Single-Bonded Repairs to Symmetrical Composite Structures. Jour-nal of Failure Analysis and Prevention.2018. http://doi:10.1007/s11668-018-0557-7
  • 16. Kaddouri N, Madani K, Rezgani L, Mokhtari M, Feaugas X. Analysis of the effect of modifying the thickness of a damaged and repaired plate by composite patch on the J-Integral; effect of bonding defects. Journal of the Brazilian Society of Mechanical Sciences and Engi-neering. 2020;42(8). http://doi:10.1007/s40430-020-02515-y
  • 17. Madani K, Touzain S, Feaugas X, Cohendouz S, Ratwani M. Exper-imental and numerical study of repair techniques for panels with ge-ometrical discontinuities. Computational Materials Science. 2010; 48(1):83–93. http://doi:10.1016/j.commatsci.2009.12.005
  • 18. Aldeen A, Mahdi D, Zhongwei C, Disher I, Mohamad B. Effect of isothermal and isochronal aging on the microstructure and precipitate evolution in beta-quenched n36 Zirconium alloy. Facta Universitatis-Series Mechanical Engineering.2023. https://doi:10.22190/FUME230 405019A
  • 19. Rivallant S, Bouvet C, Hongkarnjanakul N . Failure analysis of CFRP laminates subjected to compression after impact simulation using discrete interface elements.Compos. Part A: Appl. Sci. Manuf. 2013.55:83-93. https://doi.org/10.1016/j.compositesa.20 13.08.003
  • 20. Rashnooie R, Zeinoddini M, Ahmadpour F, Beheshti Aval SB, Chen T. A coupled XFEM fatigue modelling of crack growth, delamination and bridging in FRP strengthened metallic plates. Engineering Frac-ture Mechanics. 2023.279(17):200-230. https://doi.org/10.1016/j.engfracmech.2022.109017
  • 21. Ait Kaci, K Madani, M Mokhtari, X Feaugas, S Touzain. Impact of composite patch on the J-Integral in adhesive layer for repaired Alu-minum plate. Advances in Aircraft and Spacecraft Science. 2017; 4(6): 679-699. https://doi.org/10.12989/aas.2017.4.6.679.
  • 22. Bernhard Horn, Johannes Neumayer and Klaus Drechsler. Influence of patch length and thickness on strength and stiffness of patched laminates. Journal of Composite Materials. 2018;52(16):2199–2212. https://doi.org/10.1177/0021998317740413
  • 23. K Madani, S Touzain, X Feaugas, M Benguediab, M Ratwani. Stress distribution in a 2024-T3 aluminum plate with a circular notch, re-paired by a graphite/epoxy composite patch. International Journal of Adhesion and Adhesives. 2009; 29: 225-233. https://doi:org/10 .1016/ j.ijadhadh.2008.05.004
  • 24. Rezgani L, Madani K, Feaugas X, Touzain S, Cohendoz S, Valette J. Influence of water ingress onto the crack propagation rate in a AA2024-T3 plate repaired by a carbon/epoxy patch. Aerospace Sci-ence and Technology.2016;55:359–365. https://doi:10.1016/j.ast.2016.06.010
  • 25. Wahrhaftig AM, Plevris V, Mohamad B A, Pereira D L .Minimum design bending moment for systems of equivalent stiffness. Struc-tures.2022;57:105224. https://doi.org/10.1016/j.istruc.2023.105224
  • 26. Al-Abboodi H, Fan H, Al-Bahrani M, Abdelhussien A, Mohamad B. Mechanical characteristics of nano-crystalline material in metallic glass formers. Facta Universitatis-Series Mechanical Engineering. 2023. https://doi:10.22190/FUME230128016A
  • 27. Davis M, Bond D. Principles and practices of adhesive bonded structural joints and repairs. International Journal of Adhesion and Adhesives.1999;19:91–105. https://doi.org/10.1016/S0143-7496(98)00026-8
  • 28. Xi J, Yu Z. Toughening mechanism of rubber reinforced epoxy com-posites by thermal and microwave curing. J. Appl. Polym. Sci. 2017;135(5): 45767–45775. https://doi.org/10.1002/app.45767
  • 29. Maleki A, Saeedifar M, Najafabadi MA, Zarouchas D. The Fatigue Failure Study of Repaired Aluminum Plates by Composite Patches using Acoustic Emission. Engineering Fracture Mechanics.2017; 210(1):300-311.https://doi.org/10.1016/j.engfracmech.2017.12.034
  • 30. Seidl AL. Repair Aspects of Composite and Adhesively Bonded Aircraft Structures. Handbook of Composites. Chapter 39. Springer. 1998;857-882.
  • 31. Zitoune R, Collombet F. Numerical Prediction of the Thrust Force Responsible of Delamination During the Drilling of the Long-fibre Composite Structures. Composites Part A: Applied Science and Manufacturing.2007;38(3):858–866. https://doi.org/10.1016/j.com positesa.2006.07.009
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c46fd7d4-3bab-4066-baf9-ae68e3a2078e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.