
1. Introduction

Leonardo da Vinci (1452–1519) lived and 
worked in the Renaissance, which was a period 
of great discoveries and progress in science, 
technology, and art. This period was character-
ised by a significant progress in cartography, 
to which Leonardo also made a contribution. 
The most well-known cartographic works by 
Leonardo da Vinci include: A map of Imola, the 
map of the Chiana Valley, map of western Tus-
cany, the map of the Pontine Marshes and the 
Mapa mundi. Apart from these works, he also 
created numerous other maps and topogra-
phic sketches, mainly for military, hydrological, 
and engineering purposes. The cartographic 
works of Leonardo da Vinci were described in 
several publications, including Isaacson (2017), 
Kemp (2007), Puceković (2013), Ristujczina 
(2020), Snyder (1993), and Tyler (2017).

The paper presents the results of the carto-
metric analysis of the Leonardo da Vinci’s Mapa 
mundi and A map of Imola. These works were 
selected due to the availability of modern ana-
lytical methodologies and software that support 
such analysis. Although Leonardo da Vinci did 

not provide mathematical functions describing 
the projection he used for the Mappa mundi, 
they were introduced later, e.g. in Bower (2012).
The projection functions provide a basis for 
conducting a detailed analysis of a projection 
taking advantage of modern methods and 
computer software. On the other hand, A map 
of Imola has a geometric basis. It was created 
according to detailed field measurements, so 
its cartometric properties can be defined. The 
analysis of the map is limited only to the area 
inside the city walls. As the applied methods 
and software require the identification of the 
corresponding points on the historical map 
and on an equivalent contemporary map, it 
would be difficult to identify such points outside 
this area. Other maps created by Leonardo 
da Vinci cover large areas drawn from a bird’s 
eye view, which were not based on such precise 
measurements as the map of Imola.

A map of Imola (Figure 1) was drawn in 1502. 
As opposed to most town maps from this era, 
which were made using oblique projection, A map 
of Imola employed the orthogonal projection. 
The author measured the length of streets 
using steps. The directions were measured 
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from the Palazzo Comunale to the centres of 
street junctions (Royal Collection Online, n.d. a). 
The map is currently part of the Royal Collection 
in Windsor and its dimensions are 44 × 60.2 cm.

The Mappa mundi (Figure 2), drawn in eight 
parts (octants), uses the Leonardo da Vinci’s 
projection that has an original structure (Royal 
Collection Online, n.d. b). Its original surface is 
a sphere divided into octants, creating eight 
equilateral spherical triangles whose borders 
are the meridians and the equator (Figure 3).

In the Leonardo da Vinci’s projection, the 
octant of the sphere is the Reuleaux triangle. 
It is a curved triangle whose sides are the arcs 
of circles with their centres and ends at the 
vertices of an equilateral triangle. A Reuleaux 
triangle is constructed by drawing an equilateral 
triangle and then drawing circles in the vertices 
of the triangle, of the radii equal to the sides of 
the triangle. The intersection of those circles 
forms the Reuleaux triangle (Figure 4).

2. Cartometric analysis of selected works 
by Leonardo da Vinci

2.1. Methodology for the analysis  
of the Leonardo da Vinci’s projection

This section analyses the metric properties 
of the projection used by Leonardo da Vinci in 
his Mappa mundi. The shape of the graticule 
and the projection distortions were analysed. 
The metric properties of the projection used by 
Leonardo da Vinci were analysed with the use 
of projection functions according to Bower 
(2012):

  →r ′ = [x = –r cos θ, y = r sin θ]               (1)

where:

 

Figure 1. A map of Imola (Royal Collection Trust / © His Majesty King Charles III 2023)

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = R  π2− – Φ

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = R  π2− – Φ
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Figure 2. Mappa mundi in the Leonardo da Vinci’s projection (northern hemisphere) (Royal Collection Trust / 
© His Majesty King Charles III 2023)

Figure 3. Division of the sphere into octants Figure 4. The construction of the Reuleaux triangle
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For the reverse projection, the formulas take 
the following form:

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = 
– π4− arctan yx−

arccos   √             – π6−
x2+y2

πR

μΦ =    1 +  f 2 A2

1–A2

μλ =                  arccos A – π6− 4A
cosΦ

0.5Σn
i=1[(mi–1)2+ (ni–1)2]cosΦiE =     Σn

i=1cosΦi

λ ∈  – π4− ,+  π4−

Φ ∈   0, π2−

,  (2)

The parametric scales in the Leonardo da 
Vinci’s projection are as follows:

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = 
– π4− arctan yx−

arccos   √             – π6−
x2+y2

πR

μΦ =    1 +  f 2 A2

1–A2

μλ =                  arccos A – π6− 4A
cosΦ

0.5Σn
i=1[(mi–1)2+ (ni–1)2]cosΦiE =     Σn

i=1cosΦi

λ ∈  – π4− ,+  π4−

Φ ∈   0, π2−

, 
(3)

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = 
– π4− arctan yx−

arccos   √             – π6−
x2+y2

πR

μΦ =    1 +  f 2 A2

1–A2

μλ =                  arccos A – π6− 4A
cosΦ

0.5Σn
i=1[(mi–1)2+ (ni–1)2]cosΦiE =     Σn

i=1cosΦi

λ ∈  – π4− ,+  π4−

Φ ∈   0, π2−

,

where A = 12  – ϕ
π  .

The area distortion scale p is expressed by 
the same formula as μλ.

The m and n extreme scales and angular dis-
tortions are calculated based on the parametric 
scales and the area scale with the use of for-
mulas presented in relevant literature, e.g. in 
Pędzich (2014). The distortions of the whole 
area are determined by the so-called integral 
measures (Biernacki, 1949). They allow for the 
comparison of the distortions of the given area 
in several different cartographic projections. 
For the purposes of this research, the mean 
square Airy distortion was applied. It was cal-
culated in the nodes of the cartographic grid, 
with the following formula:

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = 
– π4− arctan yx−

arccos   √             – π6−
x2+y2

πR

μΦ =    1 +  f 2 A2

1–A2

μλ =                  arccos A – π6− 4A
cosΦ

0.5Σn
i=1[(mi–1)2+ (ni–1)2]cosΦiE =     Σn

i=1cosΦi

λ ∈  – π4− ,+  π4−

Φ ∈   0, π2−

           (4)

The analysis of the metric properties of the pro-
jection was limited to a single octant 

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = 
– π4− arctan yx−

arccos   √             – π6−
x2+y2

πR

μΦ =    1 +  f 2 A2

1–A2

μλ =                  arccos A – π6− 4A
cosΦ

0.5Σn
i=1[(mi–1)2+ (ni–1)2]cosΦiE =     Σn

i=1cosΦi

λ ∈  – π4− ,+  π4−

Φ ∈   0, π2− , 

r = R  π2− – Φ f = 4λ
π—

θ = f   arccos    rπR   – π6−  = f   arccos  12− – Φ−π   – π6−

λ = 
– π4− arctan yx−

arccos   √             – π6−
x2+y2

πR

μΦ =    1 +  f 2 A2

1–A2

μλ =                  arccos A – π6− 4A
cosΦ

0.5Σn
i=1[(mi–1)2+ (ni–1)2]cosΦiE =     Σn

i=1cosΦi

λ ∈  – π4− ,+  π4−

Φ ∈   0, π2−

, as all other octants are projected in 

a similar way.

2.2. The analysis of the graticule in the 
Leonardo da Vinci’s projection

The images of parallels in this projection are 
arcs of circles of the radii r = R� π2  – ϕ� for the 
specific latitude ϕ = ϕ. The image of each pa-
rallel starts and ends in the points located on 
the images of meridians that are the borders of 
the Reuleaux triangle.

The images of meridians in the da Vinci’s 
projection have the form of certain curves, pro-
vided that two meridians of the longitudes 
λ = ± π4 are represented as the arcs of circles 

of the radius r = R     and the centres in the 
points of the coordinates x1 = – √34  Rπ, y1 = R π4  
and x2 = – √34  Rπ, y2 = –R π4 . The central merid-
ian λ = 0 is projected to a section of a straight 
line of the length R π2 . The ends of the section 
have the coordinates x = 0, y = 0 and x = –R π2 , 
y = 0.

The graticule (ϕ = 5°, ∆λ = 5°) has the form 
presented in Figure 5.

The extension of the projection to the whole 
globe results in a rather unusual representation 
(Figure 6). One may notice, that the projection is 
not regular for the whole globe. The parallel of the 
latitude ϕ =  π (1 – √3)

2
 = 90° (1 – √3) ≈ –65°53′4″ 

is projected in form of a point. Parts of the 
images of the western and eastern hemi-

π
2

Figure 5. The graticule in the projection used by 
Leonardo da Vinci

Figure 6. The graticule of the whole globe



5Cartometric analysis of selected works by Leonardo da Vinci

spheres overlap, so this projection may be 
used only in a limited area between the paral-
lels of latitude ϕ = 90° (1 – √3) and ϕ = 90° and 
the meridians λ = –135° and λ = 135°. For 
example, the graticule for ¼ of the globe is 
shown in Figure 7.

2.3. Local distortions in the Leonrdo  
da Vinci’s projection

Calculating the measures of local distortions 
within the borders of the projected triangle 
does not pose any major difficulties, with the 
exception of the geographic pole ϕ = π2 , where 
the value of the scale of linear distortion towards 
the parallel and the scale of area distortions 
are obtained in the form of indeterminacy, 
i.e. μλ = p = 0

0 . Thus, the limit of the function 
that describes the scale at ϕ → π2  was calculated.

The scales and the distortions take the extreme 
values in the points of the coordinates:

● ϕ = 0, λ = 0, then μϕ = 1, μλ = π3 , m = π3, n = 1, 
p = π3, ω = 2°38′32″;

● ϕ = 0, λ = ± π4  , then μϕ = 2√3
3  , μλ = π3  , 

m = 1.353164, n = 0.773888, p = π3,  ω = 31°36′24″;

Figure 7. The graticule of ¼ of the globe

Figure 8. Isolines of length distortion scales  
towards the meridians 

Figure 9. Isolines of length distortion scales  
towards the parallels

Figure 10. Isolines of extreme length distortion 
scales m

Figure 11. Isolines of extreme length distortion 
scales n

Figure 12. Isolines of angular distortions (degrees)
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● ϕ = π2  then μϕ = 1, μλ = 11
3  , n = 1, m = 11

3  , 

p = 11
3 , ω = 16°25′35″.

The relevant formulas were applied to calcu-
late the values of distortions in the nodes of 
the regular grid and maps were developed that 
present the distribution of local distortions in 
the projected triangle – i.e. the representation 
of ⅛ of the surface of the sphere (Figures 8–12).

As a result, the following distortion distribu-
tions were obtained. The isolines of the scales 
of distortion for areas and the scales of length 
distortions towards the parallels are the same 
in both cases and have the shape of arcs of 
circles that are parallel to the images of paral-
lels, while the isolines of length distortion 
scales towards meridians and extreme n scales 
are similar. The isolines of extreme scales m and 
angular distortions also have similar shapes. 
These maps allow us to notice the places where 
the smallest and largest distortions occur and the 
rate at which the projection distortions change.

2.4. Modifications of the projection

In order to obtain slightly different properties, 
the projection functions may be multiplied by the 
constant coefficient m0. Such transformation 
will not cause changes to the shapes of merid-
ians and parallels, i.e. ⅛ of the sphere will still 
be projected as the Reuleaux triangle, but it 
will result in a different distribution of projection 
distortions.

For example, in the projection discussed 
here, the length of the sides of the Reuleaux 
triangle equals π3 d = π

2

6  R, where R is the ra-
dius of the Earth. They are representations of 
¼ of the equator and two halves of meridians 
of the lengths of π2 R. In order to obtain a pro-
jection that would maintain the length of these 
three lines, the projection functions should be 
multiplied by the coefficient m0 = 3

π  R.
This results from simple calculations. The 

length of ½ of the meridian, i.e. the side of the 
triangle being ⅛ of the sphere equals:

s = π2 R,

and the length of the corresponding arc of the 
circle – the image of this meridian (the side of 
the Reuleaux triangle):

s' = π3  d = π
2

6  R.

Hence, the ratio of these lengths is:
s'
s  = π3  .

Thus, in order to increase the length of the 
image of the meridian to the same value as in 
the original, r should be multiplied by the reverse 
of this quotient.

The projection may also be modified so that 
the surface areas of ⅛ of the sphere and its 
image are equal (this does not mean an 
equal area projection), then the projection 
functions should be multiplied by the coefficient 
m0 = 𝑚𝑚0 =

2

√𝜋𝜋(𝜋𝜋 − √3)
 , which results from the following 

calculations:
The area of the Reuleaux triangle equals:

P' = 12 (π – √3)d 2 ,

where d is equal to the length of the side of the 
triangle, which, for this projection before modi-
fication, is equal to the length of half meridian  
d = π2 R.

At the same time, the area of ⅛ of the sphere:

 P = 12 πR2.

Thus, the proportion of the areas of the trian-
gles in the original and in the image plane equals:

P'
P   = (π – √3) π4  .

Thus, the coefficient that should be applied 
is equal to the square root from the reverse of 
this quotient.

2.5. Comparison of the Leonardo da Vinci’s 
projection with other projections with  
similar shapes of graticules

For the purpose of our comparison, we use 
projections that have similar shapes of the 
graticules, i.e. the Bonne projection, with the 
parallel ϕ0 = 45° that is projected without dis-
tortions, oblique azimuthal projections: equal 
area, conformal, and equidistant towards the 
meridians, with the main point of the coordinates 
ϕ0 = 45°, λ0 = 0°. Graticules for ⅛ of the sphere 
were created for the projections mentioned 
above. The graticules are presented in Figure 13. 

These projections were also compared in 
terms of distortions, where mean length distor-
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tions were measured in a grid of regularly placed 
points in ⅛ of the sphere, according to Airy's 
measure, based on formula (4), where m and 
n are extreme scales of length distortions. The 
results are presented in Table 1. In spite of the 
fact that lower distortions were obtained in the 
azimuthal projections and the Bonne projection, 
visually the graticule in the Leonardo da Vinci’s 
projection performs much better.

2.6. Methodology for the analysis of A map 
of Imola

The analysis presented in this study was 
conducted based on a scanned map published 
on the Royal Collection Trust website (Royal 
Collection Online, n.d. a). The map’s physical 
dimensions are 44.0 cm × 60.2 cm, while the 
scan is 2000 by 1483 pixels. As mentioned 
above, the analysis was performed only for the 
area contained within the city walls.

The cartometric analysis of A map of Imola 
was performed using commonly applied tools 
for analysing historical maps and MapAnalyst 
software. 

MapAnalyst was developed at the Institute 
of Cartography in Zurich. The software was 
written in Java and it may be downloaded free of 
charge from the website www.mapanalyst.org 
(Jenny, 2020). It enables effective identifica-
tion and management of control points on 
historical maps and modern reference maps. 
Apart from that, it calculates and displays grids 
of distortion and vectors of error on historical 
maps, as well as isolines of scale and local rota-
tion angles. It offers a wide range of parameters 
to adjust the created graphics. The software also 
calculates the scale of historical maps and their 
rotation angle, provides statistical indicators and 
offers an interactive tool to analyse the local 
changes in the shift, scale and rotation angle 
of the map (Jenny, 2006).

The analysis of the cartometric properties in 
MapAnalyst software begins with uploading the 
historical and modern maps. The user identi-
fies pairs of corresponding points and places 
them on both maps in an interactive way. Then, 
the appropriate method of transformation is 
selected. The next step is the selection of one 
of the three visualisation methods. The displace-
ment vector is the simplest method. Each line 
starts at the previously identified point on the 
historical map and ends in the location where 
this point would be situated if the historical 
map was as accurate as the reference map. 
This end point is the result of the application of 
the transformation method between the sets 
of corresponding points. Long vectors identify 
large errors on the map, while short vectors – 
small errors. Another visualisation method is 
a distortion grid, which displays local distortions 
and rotation angles on the historical map. This 
algorithm is based on the multi-quadratic inter-
polation method. Finally, the isoline method 

Figure 13. Presentation of graticules in the following projections (left to right): da Vinci, Bonne,  
oblique azimuthal conformal, equal area, and equidistant projections

Table 1. Mean length distortions in Leonardo da Vinci’s 
projections (1st version – no modifications, 2nd ver-
sion – the length of the sides of the triangle is main-
tained, 3rd version – the surface area of the triangle 
is maintained) and their comparison with Bonne, 
oblique azimuthal conformal, equal area, and equidis-
tant projections

Projection Distortions
da Vinci 1st version 0.14285
da Vinci 2nd version 0.12366
da Vinci 3rd version 0.12262

Bonne 0.06964
azimuthal conformal 0.09335
azimuthal equal area 0.04367
azimuthal equidistant 0.04280
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enables the representation of local changes in 
scale and rotation angles. This method creates 
a grid of regularly placed points, for which the 
relevant values of scale and rotation angles 
are calculated based on the pairs of points 
identified by the user. First, points located inside 
a circle of a specific radius are selected to deter-
mine values of points in the regular grid using 
an affine transformation. By calculating the 

transformation parameters, the local 
values of scale and rotation angles 
in points of the regular grid are ob-
tained. The shape of the resulting 
isolines depends on the radius of 
the circle. The larger the radius, the 
smoother the isolines are, while for 
the smaller radius, the local changes 
are displayed more prominently (Jen-
ny et al., 2007).

The interpretation of the results 
should take into consideration the 
fact that the applied methods could 
reveal inaccuracies of historical maps, 
which are caused by two factors:

− the cartographer might have 
made mistakes at various stages of 
creating the map (e.g. during me-
asurements and data integration or 
while drawing and reproducing the 
map),

− the material on which the map 
was drawn is subject to deforma-
tions with the passing of time and 
conditions in which it is stored (Jen-
ny, 2006).

In this research, the central part 
of A map of Imola was analysed 
using the contemporary OSM map 
as a reference material. 70 pairs of 
corresponding points were selected 
on both maps (Figure 14). The anal-
ysis was conducted utilising Helmert 
transformation and visualisation 
methods, including the distortion 
grid and isolines of scale and rota-
tion angles.

2.7. Analysis of the cartometric 
properties of A map of Imola

According to the obtained cal-
culation results, the map’s scale is 
1:4,640, and the rotation angle in 
comparison to the current map is 

13 degrees. There are some local changes in the 
scale and rotation angles on the map, which 
are presented in Figures 15–17. The differences 
in distance between individual points were also 
calculated. The positional accuracy obtained 
using root mean square error was 12.800 m.

Visualisation of a distortion grid reveals that 
the largest distortions occur in the south-western 

Figure 14. Sets of corresponding points on Leonardo da Vinci’s 
map (Royal Collection Trust / © His Majesty King Charles III 

2023) and on the modern OSM map

Figure 15. Distortion grid on Leonardo da Vinci’s map  
(Royal Collection Trust / © His Majesty King Charles III 2023) 

and on the modern OSM map

Figure 16. Isolines of local map rotation angles (at the interval  
of 1 degree) on Leonardo da Vinci’s map (Royal Collection  

Trust / © His Majesty King Charles III 2023) and on the modern 
OSM map
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and south-eastern parts of the map 
(see Figure 15, left). Figure 16 pre-
sents the isolines of the local rota-
tion angles of the map in reference 
to the OSM map. The interval of 
1 degree and a 300 m radius of the 
circle were adopted. The map shows 
that the largest rotation angles of the 
analysed map compared to the ref-
erence map are 18 and 17 degrees.

Finally, Figure 17 represents the 
changes in scale of the analysed 
map. The scale varies from approx. 
1:4,400 in the bottom left corner of 
the map to approx. 1:4,900 in the 
right bottom corner. This means 
that 1 cm on the map corresponds 
to approx. 44 m and 49 m respec-
tively in these two locations.

The differences between A map of Imola and 
the modern map may be caused by numerous 
factors, including:

− changes to the physical dimension of the 
map over the last 500 years,

− the content of the map was supplemented 
by using cartographic materials that had been 
developed earlier, by other authors, 

− the use of less accurate measurement 
methods.

3. Conclusion

Leonardo da Vinci was the author of numer-
ous cartographic studies, including maps and 
cartographic projection. A map of Imola is the 
earliest surviving town map in the orthogonal 
projection entirely created using detailed field 
measurements and principles of geometry. As 
such, it has a cartometric basis, which has 
been analysed in this article. Another analysed 

work by Leonardo da Vinci is his Mappa mundi. 
It presents the image of the whole globe on 
a plane, divided into octants represented by 
the Releaux triangle. The map was created in 
a pseudo-conical projection, which is neither 
a conformal nor an equal area projection. The 
central meridian of each octant is projected as 
a straight line, with its length maintained. The 
other meridians are projected as symmetrical 
curves in reference to the central meridian, with 
meridians of the longitudes λ = ± π4 projected as 
arcs of circles. The parallels are projected as 
arcs of concentric circles. The advantage of 
this type of projection is the relatively low dis-
tortion that results from the fact that the sphere 
is divided into several sections, each represented 
separately. When the parts are appropriately 
arranged, they create a map that gives an im-
pression of continuity of the represented seas 
and land masses.

Figure 17. Isolines of scale (interval 1:100, the radius of the search 
circle 300 m) on Leonardo da Vinci’s map (Royal Collection  

Trust / © His Majesty King Charles III 2023) and on the modern 
OSM map
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