Czasopismo
2024
|
Vol. 72, nr 1
|
art. no. e147346
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
By reviewing the current state of the art, this paper opens a Special Section titled “The Internet of Things and AI-driven optimization in the Industry 4.0 paradigm”. The topics of this section are part of the broader issues of integration of IoT devices, cloud computing, big data analytics, and artificial intelligence to optimize industrial processes and increase efficiency. It also focuses on how to use modern methods (i.e. computerization, robotization, automation, machine learning, new business models, etc.) to integrate the entire manufacturing industry around current and future economic and social goals. The article presents the state of knowledge on the use of the Internet of Things and optimization based on artificial intelligence within the Industry 4.0 paradigm. The authors review the previous and current state of knowledge in this field and describe known opportunities, limitations, directions for further research, and industrial applications of the most promising ideas and technologies, considering technological, economic, and social opportunities.
Rocznik
Tom
Strony
art. no. e147346
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
- Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland, dmikolaj@ukw.edu.pl
autor
- Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland
autor
- Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland
- EFREI Paris Pantheon Assas University, Paris, France
autor
- Systems Research Institute, Polish Academy of Science, Warsaw, Poland
Bibliografia
- [1] I. Rojek, E. Dostatni, D. Mikołajewski, L. Pawłowski, and K.M. Węgrzyn-Wolska, “Modern approach to sustainable production in the context of Industry 4.0,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143828, 2022, doi: 10.24425/bpasts.2022.143828.
- [2] K. Łukaszewicz, W. Urban, and E. Krawczyk-Dembicka, “Conceptualization of Industry 4.0 technology for the production of tailor-made furniture – a case study,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, pp. e144587, 2023, doi: 10.24425/bpasts.2023.144587.
- [3] A. Rahman et al., “SDN-IoT empowered intelligent framework for industry 4.0 applications during COVID-19 pandemic,” Cluster Comput., vol. 25, no. 4, pp. 2351–2368, 2022, doi: 10.1007/s10586-021-03367-4.
- [4] M. Elsisi, K. Mahmoud, M. Lehtonen, and M.M.F. Darwish, “Reliable Industry 4.0 Based on Machine Learning and IoT for Analyzing, Monitoring, and Securing Smart Meters,” Sensors, vol. 21, no. 2, p. 487, 2021, doi: 10.3390/s21020487.
- [5] M. Elsisi, M.Q. Tran, K. Mahmoud, M. Lehtonen, and M.M.F. Darwish, “Deep Learning-Based Industry 4.0 and Internet of Things towards Effective Energy Management for Smart Buildings,” Sensors, vol. 21, no. 4, p. 1038, 2021, doi: 10.3390/s21041038.
- [6] P. Moens et al., “Scalable Fleet Monitoring and Visualization for Smart Machine Maintenance and Industrial IoT Applications,” Sensors, vol. 20, no. 15, p. 4308, 2020, doi: 10.3390/s20154308.
- [7] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective,” IEEE Access, vol. 6, pp. 78238–78259, 2018, doi: 10.1109/ACCESS.2018.2884906.
- [8] F. Hussain et al., “A Framework for Malicious Traffic Detection in IoT Healthcare Environment,” Sensors, vol. 21, no. 9, p. 3025, 2021, doi: 10.3390/s21093025.
- [9] H.R. Lim, K.S. Khoo, W.Y. Chia, K.W. Chew, S.H. Ho, and P.L. Show, “Smart microalgae farming with internet-of-things for sustainable agriculture,” Biotechnol. Adv., vol. 57, p. 107931, 2022, doi: 10.1016/j.biotechadv.2022.107931.
- [10] Z. Chen, A.M. Amani, X. Yu, and M. Jalili, “Control and Optimisation of Power Grids Using Smart Meter Data: A Review,” Sensors, vol. 23, no. 4, p. 2118, 2023, doi: 10.3390/s23042118.
- [11] J.R. García Oya, A. Sainz Rojas, D. Narbona Miguel, R. González Carvajal, and F. Muñoz Chavero, “Low-Power Transit Time-Based Gas Flow Sensor with Accuracy Optimization,” Sensors, vol. 22, no. 24, p. 9912, 2022, doi: 10.3390/s22249912.
- [12] M. Coccia, S. Roshani, and M. Mosleh, “Evolution of Sensor Research for Clarifying the Dynamics and Properties of Future Directions”. Sensors, vol. 22, no. 23, p. 9419, 2022, doi: 10.3390/s22239419.
- [13] P.P. Hanzelik, A. Kummer, and J. Abonyi, ”Edge-Computing and Machine-Learning-Based Framework for Software Sensor Development,” Sensors, vol. 22, no. 11, p. 4268, 2022, doi: 10.3390/s22114268.
- [14] M. Elsisi, and M.Q. Tran, “Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles,” Sensors, vol. 21, no. 24, p. 8467, 2021, doi: 10.3390/s21248467.
- [15] R. Maqbool, M.R. Saiba, and S. Ashfaq, “Emerging industry 4.0 and Internet of Things (IoT) technologies in the Ghanaian construction industry: sustainability, implementation challenges, and benefits,” Environ. Sci. Pollut. Res. Int., vol. 30, pp. 37076–37091, 2022, doi: 10.1007/s11356-022-24764-1.
- [16] C. Laiton-Bonadiez, J.W. Branch-Bedoya, J. Zapata-Cortes, E. Paipa-Sanabria, and M. Arango-Serna, “Industry 4.0 Technologies Applied to the Rail Transportation Industry: A Systematic Review,” Sensors, vol. 22, no. 7, p. 2491, 2022, doi: 10.3390/s22072491.
- [17] R. Sahal, S.H. Alsamhi, J.G. Breslin, and M.I. Ali, “Industry 4.0 towards Forestry 4.0: Fire Detection Use Case,” Sensors, vol. 21, no. 3, p. 694, 2021, doi: 10.3390/s21030694.
- [18] S. Morrone, C. Dimauro, F. Gambella, and M.G. Cappai, “Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions,” Sensors, vol. 22, no. 12, p. 4319, 2022, doi: 10.3390/s22124319.
- [19] K.P. Paranitharan, G. Ebenezer, V. Balaji, M. Adham Khan, and T. Ramesh Babu, “Application of industry 4.0 technology in containing Covid-19 spread and its challenges,” Mater. Today Proc., vol. 68, pp. 1225–1232, 2022, doi: 10.1016/j.matpr.2022.06.009.
- [20] P.W. Khan, Y.C. Byun, and N. Park, “IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning,” Sensors, vol. 20, no. 10, p. 2990, 2020, doi: 10.3390/s20102990.
- [21] C.G. Cheah, W.Y. Chia, S.F. Lai, K.W. Chew, S.R. Chia, and P.L. Show, “Innovation designs of industry 4.0 based solid waste management: Machinery and digital circular economy,” Environ. Res., vol. 213, p. 113619, 2022, doi: 10.1016/j.envres.2022.113619.
- [22] M.N.H. Reza, S. Jayashree, C.A.N. Malarvizhi, M.A. Rauf, K. Jayaraman, and S.H. Shareef, “The implications of Industry 4.0 on supply chains amid the COVID-19 pandemic: a systematic review,” F1000Research, vol. 10, p. 1008, 2021, doi: 10.12688/f1000research.73138.2.
- [23] T. Ruppert, A. Darányi, T. Medvegy, D. Csereklei, and J. Abonyi, “Demonstration Laboratory of Industry 4.0 Retrofitting and Operator 4.0 Solutions: Education towards Industry 5.0,” Sensors, vol. 23, no. 1, p. 283, 2022, doi: 10.3390/s23010283.
- [24] R. Kumar, S. Rani, and M.A. Awadh, “Exploring the Application Sphere of the Internet of Things in Industry 4.0: A Review, Bibliometric and Content Analysis,” Sensors, vol. 22, no. 11, p. 4276, 2022, doi: 10.3390/s22114276.
- [25] M. Majid et al., “Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review,” Sensors, vol. 22, no. 6, p. 2087, 2022, doi: 10.3390/s22062087.
- [26] V. Özdemir, “The Dark Side of the Moon: The Internet of Things, Industry 4.0, and The Quantified Planet,” OMICS, vol. 22, no. 10, pp. 637–641, 2018, doi: 10.1089/omi.2018.0143.
- [27] T. Kalsoom, N. Ramzan, S. Ahmed, and M. Ur-Rehman, ”Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0,” Sensors, vol. 20, no. 23, p. 6783, doi: 10.3390/s20236783.
- [28] M. Faheem and R.A. Butt, “Big datasets of optical-wireless cyber-physical systems for optimizing manufacturing services in the internet of things-enabled industry 4.0,” Data Brief., vol. 42, p. 108026, 2022, doi: 10.1016/j.dib.2022.108026.
- [29] S. Rajbhandari, N. Devkota, G. Khanal, S. Mahato, and U.R. Paudel, “Assessing the industrial readiness for adoption of industry 4.0 in Nepal: A structural equation model analysis,” Heliyon, vol. 8, no. 2, p. e08919, 2022, doi: 10.1016/j.heliyon.2022.e08919.
- [30] T. Akyazi, A. Goti, A. Oyarbide, E. Alberdi, and F. Bayon, “A Guide for the Food Industry to Meet the Future Skills Requirements Emerging with Industry 4.0,” Foods, vol. 9, no. 4, p. 492, 2020, doi: 10.3390/foods9040492.
- [31] K.O.M. Salih, T.A. Rashid, D. Radovanovic, and N. Bacanin, “A Comprehensive Survey on the Internet of Things with the Industrial Marketplace,” Sensors, vol. 22, no. 3, p. 730, 2022, doi: 10.3390/s22030730.
- [32] A.K. Tyagi, S. Dananjayan, D. Agarwal, and H.F. Thariq Ahmed, “Blockchain-Internet of Things Applications: Opportunities and Challenges for Industry 4.0 and Society 5.0,” Sensors, vol. 23, no. 2, p. 947, 2023, doi: 10.3390/s23020947.
- [33] G.D.N. Silveira et al., “I4.0 Pilot Project on a Semiconductor Industry: Implementation and Lessons Learned,” Sensors, vol. 20, no. 20 p. 5752, 2020, doi: 10.3390/s20205752.
- [34] B. Alhayani et al., “5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: perspective of smart healthcare system,” Appl. Nanosci., vol. 13, no. 3, pp. 1807–1817, 2023, doi: 10.1007/s13204-021-02152-4.
- [35] A. Frankó, G. Vida, and P. Varga, “Reliable Identification Schemes for Asset and Production Tracking in Industry 4.0,” Sensors, vol. 20, no. 13, p. 3709, 2020, doi: 10.3390/s20133709.
- [36] H. Sherazi, L. Grieco, M. Imran, and G. Boggia, “Energy-efficient LoRaWAN for Industry 4.0 Applications,” IEEE Trans. Ind. Inform., vol. 17, no. 2, pp. 891–902, Feb. 2021, doi: 10.1109/TII.2020.2984549.
- [37] D.M. Hernandez, G. Peralta, L. Manero, R. Gomez, J. Bilbao, and C. Zubia, “Energy and coverage study of LPWAN schemes for Industry 4.0,” 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Spain, 2017, pp. 1–6, doi: 10.1109/ECMSM.2017.7945893.
- [38] D. Bamunuarachchi, D. Georgakopoulos, A. Banerjee, and P.P. Jayaraman, “Digital Twins Supporting Efficient Digital Industrial Transformation,” Sensors, vol. 21, no. 20, p. 6829, 2021, doi: 10.3390/s21206829.
- [39] A. Chauhan, S.K. Jakhar, and C. Chauhan, “The interplay of circular economy with industry 4.0 enabled smart city drivers of healthcare waste disposal,” J. Clean. Prod., vol. 279, p. 123854, 2021, doi: 10.1016/j.jclepro.2020.123854.
- [40] E. Mikołajewska and D. Mikołajewski, “Integrated IT environment for people with disabilities: a new concept,” Open Medicine, vol. 9, no. 1, pp. 177–182, 2014, doi: 10.2478/s11536-013-0254-6.
- [41] R.N. Shaw, A. Ghosh, S. Mekhief, and V.E. Balas, Applications of AI and IoT in renevable energy. Elsevier Science & Technology, 2022.
- [42] M. Kuzlu, C. Fair, and O. Guler, “Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity,” Discov. Internet Things, vol. 1, p. 7, 2021, doi: 10.1007/s43926-020-00001-4.
- [43] Ł. Apiecionek, J.M. Czerniak, D. Ewald, and M. Biedziak. “IoT heating solution for smart home with fuzzy control,” J. Univers. Comput. Sci., vol. 26, no. 6, pp. 747–761, 2020.
- [44] D. Ewald, H. Zarzycki, Ł. Apiecionek, and J.M. Czerniak, “Ordered Fuzzy Numbers Applied in Bee Swarm Optimization Systems,” J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1475–1494, 2020.
- [45] J. Czerniak, H. Zarzycki, Ł. Apiecionek, W. Palczewski, and P. Kardasz. “A Cellular Automata-Based Simulation Tool for Real Fire Accident Prevention,” Math. Probl. Eng., vol. 2018, p. 3058241, 2018.
- [46] A. Semenov et al., “Advanced correlation method for bit position detection towards high accuracy data processing in industrial computer systems,” Inf. Sci., vol. 624, pp. 652–673, 2023. doi: 10.1016/j.ins.2022.12.110.
- [47] M. Kaczyński and Z. Piotrowski, “High-Quality Video Water-marking Based on Deep Neural Networks and Adjustable Subsquares Properties Algorithm,” Sensors, vol. 22, p. 5376, 2022. doi: 10.3390/s22145376.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c42ef62d-3a5f-45e0-8ab4-b85db7a8d418