Warianty tytułu
Języki publikacji
Abstrakty
The article describes a new test method to quickly evaluate the durability of a protective coating to dynamic contact with liquid metal. The essence of the method is the movement of a drop of liquid metal inside a rotating ring, covered from the inside with the protective coating under test. The parameters determined in the test are analogous to the classic pin-on-disk tribological test. The method was tested for the system: liquid alloy 2017A vs. AlTiN coating on a copper substrate. The test temperature was 750°C, and exposure times ranged from 30 to 90 minutes. Sliding path equivalent for the metal droplet/coating system ranged from 31.6 to 95 m. The study, which included visual evaluation of the surface of the samples, followed by phase and microstructural analysis, showed the high efficiency of the method for assessing the lifetime of protective coatings on contact with liquid metal. The investigated issue was also analyzed from the model side taking into account changes in the diffusion coefficient at the contact of liquid metal with the substrate, occurring with the progressive degradation of the protective coating.
Czasopismo
Rocznik
Tom
Strony
40--48
Opis fizyczny
Bibligr. 23 poz., il., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Faculty of Non-Ferrous Metals Kraków
autor
- AGH University of Krakow, Faculty of Non-Ferrous Metals Kraków
autor
- AGH University of Krakow, Faculty of Non-Ferrous Metals Kraków
autor
- Rzeszów University of Technology, Department of Material Science, Rzeszów, Poland
Bibliografia
- [1] Buyanovskii, I.A. (1994). Tribological test methods and apparatus. Chemistry Technology Fuels Oils. 30, 133-147. https://doi.org/10.1007/BF00723941.
- [2] Torbacke, M., Kassman, Å. & Kassfeldt, E. (2014). Tribological Test Methods. In Lubricants: Introduction to Properties and Performance (pp. 113-132). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118799734.
- [3] Jakubéczyová, D., Hagarová, M., Hvizdoš, P., Cervová, J. & Frenák, M. (2015). Tribological tests of modern coatings. International Journal of Electrochemical Science. 10(9), 7803-7810.
- [4] Hagarová1, M., Savková, J. & Jakubéczyová, D. (2008). Structure and tribological properties of thin TiAlN coating, Journal of Metals, Materials and Minerals. 18(2), 25-31.
- [5] Rui Wang, Hai-Juan Mei, Ren-Suo Li, Quan Zhang, Teng-Fei Zhang, Qi-Min Wang, (2018). Friction and wear behavior of AlTiN-coated carbide balls against SKD11 hardened steel at elevated temperatures. Acta Metallurgica Sinica (English Letters). 31, 1073-1083. https://doi.org/10.1007/s40195-018- 0753-1.
- [6] Eustathopoulos, N. (2015). Wetting by liquid metals application in materials processing: The contribution of the Grenoble group. Metals. 5(1), 350-370. https://doi.org/10.3390/met5010350.
- [7] Asthana, R. & Sobczak, N. (2014). Wettability in joining of advanced ceramics and composites: issues and challenges. Ceramics Transactions. 248, 589-600.
- [8] Sobczak, N., Singh, M. & Asthana, R. (2005). High temperature wettability measurements in metal/ceramic systems – some methodological issues. Current Opinion in Solid State and Materials Science. 9(4-5), 241-253. DOI:10.1016/j.cossms.2006.07.007.
- [9] Eustathopoulos, N., Sobczak, N., Passerone A. & Nogi, K. (2005). Measurement of contact angle and work of adhesion at high temperature. Journal of Materials Science. 40, 2271-2280. https://doi.org/10.1007/s10853-005-1945-4.
- [10] Sobczak, N., Nowak, R., Radziwill, W., Budzioch, J. & Glenz, A. (2008). Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering A. 495(1-2), 43-49. https://doi.org/10.1016/j.msea.2007.11.094.
- [11] Hotlos, A., Boczkal, G., Nawrocki, J. & Ziewiec, K. (2019). Microstructure of the oxide ceramics/Inconel 713C interface. Materials Science and Technology (United Kingdom). 35(4), 456-461. https://doi.org/10.1080/02670836.2019.1570440.
- [12] Sułkowski, B., Boczkal, G., Pałka, P. & Mrówka-Nowotnik, G. (2021) Effect of graphite microstructure on their physical parameters and wettability properties. Refractories and Industrial Ceramics. 62(4), 458-462. https://doi.org/10.1007/s11148-021-00624-2.
- [13] Liu Jian, Wang Wei, Yan Wei, Shi Quan Qiang, Yang Zhenguo, Dan Yiyin, Yang Ke. Rotatory experimental apparatus of liquid metal high temperature corrosion, Pat. CN204758460.
- [14] Wang Pei, Ye Zhongfei, Dong Hong, Li Dianzhong, Li Yiyi, Rotary type dynamic metal corrosion device, Pat. CN203405397.
- [15] Góral, M., Mrówka-Nowotnik, G. (2020). Protective coatings for aluminium die casting moulds and continuous casting moulds: A review Ochrona Przed Korozja. 63(7), 216-219. https://doi.org/10.15199/40.2020.7.1.
- [16] Boczkal. G., Patent Application P.435041, A method and device for testing durability of protective coatings in contact with liquid metal, 2020-08-21.
- [17] Wriedt, H.A., Murray, J.L. (1986). Binary Alloy Phase Diagrams, 3, (Ed. T. B. Massalski),ASM, Metals Park, OH 32705.
- [18] PalDey, S. & Deevi, S.C. (2003). Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A. 342(1-2), 58-79. https://doi.org/10.1016/S0921-5093(02)00259-9.
- [19] Mrówka-Nowotnik, G., Gancarczyk, K., Nowotnik, A., Dychtoń, K. & Boczkal, G. (2021). Microstructure and properties of as-cast and heat-treated 2017a aluminium alloy obtained from scrap recycling. Materials. 14(1),89, 1-25. https://doi.org/10.3390/ma14010089.
- [20] Ullner, C., Beckmann, J. & Morrell, R. (2002). Instrumented indentation test for advanced technical ceramics. Journal of the European Ceramic Society. 22(8), 1183-1189. https://doi.org/10.1016/S0955-2219(01)00433-2.
- [21] Okane, T., Senderowski, C., Zasada, D., Kania, B., Janczak Rusch, J. & Wolczynski, W. (2011). Thermodynamic justification for the Ni/Al/Ni joint formation by a diffusion brazing. International Journal of Thermodynamics. 14(3), 97- 105. https://doi.org /10.5541/ijot.296.
- [22] Paul, A., Laurila, T., Vuorinen, V., Divinski, S. (2014). Fick’s Laws of Diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids (pp. 115-139). Springer, Cham. https://doi.org/10.1007/978-3-319-07461-0_3.
- [23] Perek-Nowak, M. & Boczkal, G. (2016). Formation of transition phases on interface between monocrystalline Fe and Cu due to mutual solid-state diffusion. Archives of Metallurgy and Materials. 61(2A), 581-585. DOI:10.1515/amm-2016-0099.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c42e4930-1761-4b27-8a97-715bac75cbf6