Czasopismo
2024
|
Vol. 20, no 1
|
173--188
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This study utilizes knowledge management (KM) to highlight a documentation-centric approach that is enhanced through artificial intelligence. Knowledge management can improve the decision-making process for predicting models that involved datasets, such as air pollution. Currently, air pollution has become a serious global issue, impacting almost every major city worldwide. As the capital and a central hub for various activities, Jakarta experiences heightened levels of activity, resulting in increased vehicular traffic and elevated air pollution levels. The comparative study aims to measure the accuracy levels of the naïve bayes, decision trees, and random forest prediction models. Additionally, the study uses evaluation measurements to assess how well the machine learning performs, utilizing a confusion matrix. The dataset’s duration is three years, from 2019 until 2021, obtained through Jakarta Open Data. The study found that the random forest achieved the best results with an accuracy rate of 94%, followed by the decision tree at 93%, and the naïve bayes had the lowest at 81%. Hence, the random forest emerges as a reliable predictive model for prediction of air pollution.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
173--188
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
autor
- Bakrie University, Faculty of Engineering and Computer Science, Information System, Indonesia, siti.rohajawati@bakrie.ac.id
autor
- Bakrie University, Faculty of Engineering and Computer Science, Information System, Indonesia, siti.rohajawati@bakrie.ac.id
- Bakrie University, Faculty of Engineering and Computer Science, Information System, Indonesia, 1232912003@student.bakrie.ac.id
autor
- Bakrie University, Faculty of Engineering and Computer Science, Information System, Indonesia, 1232912003@student.bakrie.ac.id
- PT. Festino Indonesia. IT Solution Architect, Indonesia, mtbsihotang@gmail.com
Bibliografia
- [1] Afdhaluzzikri, A., Mawengkang, H., & Sitompul, O. S. (2022). Perfomance analysis of Naive Bayes method with data weighting. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 6(3), 817-821. https://doi.org/10.33395/sinkron.v7i3.11516
- [2] Aini, N., & Mustafa, M. S. (2020). Data mining approach to predict air pollution in makassar. 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS) (pp. 1-5). IEEE. https://doi.org/10.1109/ICORIS50180.2020.9320800
- [3] Alamsyah, A., & Salma, N. (2018). A comparative study of employee churn prediction model. 4th International Conference on Science and Technology (ICST) (pp. 3–6). IEEE. https://doi.org/10.1109/ICSTC.2018.8528586
- [4] Ameer, S., Shah, M. A., Khan, A., Song, H., Maple, C., Islam, S. U., & Asghar, M. N. (2019). Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE Access, 7, 128325-128338. https://doi.org/10.1109/ACCESS.2019.2925082
- [5] Anggraini, A. N., Ummah, N. K., Fatmasari, Y., & Hayati Holle, K. F. (2022). Air quality forecasting in DKI Jakarta using Artificial Neural Network. MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology), 14(1), 1-5. https://doi.org/10.18860/mat.v14i1.13863
- [6] Anshari, M., Syafrudin, M., Tan, A., Fitriyani, N. L., & Alas, Y. (2023). Optimisation of knowledge management (KM) with Machine Learning (ML) enabled. Information, 14(1), 35. https://doi.org/10.3390/info14010035
- [7] Aram, S. A., Nketiah, E. A., Saalidong, B. M., Wang, H., Afitiri, A.-R., Akoto, A. B., & Lartey, P. O. (2024). Machine learning-based prediction of air quality index and air quality grade: a comparative analysis. International Journal of Environmental Science and Technology, 21, 1345-1360. https://doi.org/10.1007/s13762-023-05016-2
- [8] Barid, A. J., Hadiyanto, H., & Wibowo, A. (2024). Optimization of the algorithms use ensemble and synthetic minority oversampling technique for air quality classification. Indonesian Journal of Electrical Engineering and Computer Science, 33(3), 1632–1640. https://doi.org/10.11591/ijeecs.v33.i3.pp1632-1640
- [9] Benifa, J. V. B., Kumar, P. D., & Rose, J. B. R. (2022). Prediction of air quality index using machine learning techniques and the study of its influence on the health hazards at urban environment. In M. Lahby, A. Al-Fuqaha, & Y. Maleh (Eds.), Computational intelligence techniques for green smart cities (pp. 249-269). Springer International Publishing. https://doi.org/10.1007/978-3-030-96429-0_12
- [10] Bilquise, G., & Shaalan, K. (2022). AI-based academic advising framework: A knowledge management perspective. International Journal of Advanced Computer Science and Applications, 13(8). https://doi.org/10.14569/IJACSA.2022.0130823
- [11] Elvin, W. A. (2024). Forecasting water quality through machine learning and hyperparameter optimization. Indonesian Journal of Electrical Engineering and Computer Science, 33(1), 496-506. https://doi.org/10.11591/ijeecs.v33.i1.pp496-506
- [12] Minister of Environment and Forestry. (2020). Regulation Number 14 of 2020 concerning Air Pollution Standard Index. https://peraturan.bpk.go.id/Download/156214/Permen%20LHK%20Nomor%2014%20Tahun%202020.pdf
- [13] Gupta, N. S., Mohta, Y., Heda, K., Armaan, R., Valarmathi, B., & Arulkumaran, G. (2023). Prediction of air quality index using Machine Learning techniques: A comparative analysis. Journal of Environmental and Public Health, 2023, 4916267. https://doi.org/10.1155/2023/4916267
- [14] Hai, P. M., Tinh, P. H., Son, N. P., Van Thuy, T., Hanh, N. T. H., Sharma, S., Hoai, D. T., & Duy, V. C. (2022). Mangrove health assessment using spatial metrics and multi-temporal remote sensing data. PLoS ONE, 17(12), e0275928. https://doi.org/10.1371/journal.pone.0275928
- [15] Imam, M., Adam, S., Dev, S., & Nesa, N. (2024). Air quality monitoring using statistical learning models for sustainable environment. Intelligent Systems with Applications, 22, 200333. https://doi.org/10.1016/j.iswa.2024.200333
- [16] Baladjay, J. M., Riva, N., Santos, L. A., Cortez, D. M., Centeno, C., & Sison, A. A. R. (2023). Performance evaluation of random forest algorithm for automating classification of mathematics question items. World Journal of Advanced Research and Reviews, 18(2), 034–043. https://doi.org/10.30574/wjarr.2023.18.2.0762
- [17] Kang, G. K., Gao, J. Z., Chiao, S., Lu, S., & Xie, G. (2018). Air quality prediction: Big Data and Machine Learning approaches. International Journal of Environmental Science and Development, 9(1), 8–16. https://doi.org/10.18178/ijesd.2018.9.1.1066
- [18] Krishna, V. A., Koganti, H., Madhumathi, M., & Dharani, V. (2023). Air quality prediction using machine learning algorithm. International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) (pp. 2201–2206). IEEE. https://doi.org/10.1109/ICSCDS56580.2023.10105063
- [19] L’Heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. M. (2017). Machine Learning with Big Data: challenges and approaches. IEEE Access, 5, 7776–7797. https://doi.org/10.1109/ACCESS.2017.2696365
- [20] Pisoni, G., Molnár, B., & Tarcsi, Á. (2023). Knowledge management and data analysis techniques for data-driven Financial Companies. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-023-01607-z
- [21] Ravindiran, G., Hayder, G., Kanagarathinam, K., Alagumalai, A., & Sonne, C. (2023). Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam. Chemosphere, 338, 139518. https://doi.org/10.1016/j.chemosphere.2023.139518
- [22] Schaefer, C., & Makatsaria, A. (2021). Framework of data analytics and integrating knowledge management. International Journal of Intelligent Networks, 2, 156–165. https://doi.org/https://doi.org/10.1016/j.ijin.2021.09.004
- [23] Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. Stata Journal, 20(1), 3-29. https://doi.org/10.1177/1536867X20909688
- [24] Simu, S., Turkar, V., Martires, R., Asolkar, V., Monteiro, S., Fernandes, V., & Salgaoncary, V. (2020). Air pollution prediction using machine learning. IEEE Bombay Section Signature Conference (IBSSC) (pp. 231-236). IEEE. https://doi.org/10.1109/IBSSC51096.2020.9332184
- [25] Somashekar, H., & Boraiah, R. (2023). Network intrusion detection and classification using machine learning predictions fusion. Indonesian Journal of Electrical Engineering and Computer Science, 31(2), 1147-1153. https://doi.org/10.11591/ijeecs.v31.i2.pp1147-1153
- [26] Taherdoost, H., & Madanchian, M. (2023). Artificial intelligence and knowledge management: Impacts, benefits, and implementation. Computers, 12(4), 72. https://doi.org/10.3390/computers12040072
- [27] Tangwannawit, S., & Tangwannawit, P. (2022). An optimization clustering and classification based on artificial intelligence approach for internet of things in agriculture. IAES International Journal of Artificial Intelligence, 11(1), 201–209. https://doi.org/10.11591/ijai.v11.i1.pp201-209
- [28] Yarragunta, S., Nabi, M. A., Jeyanthi, P., & Revathy, S. (2021). Prediction of air pollutants using supervised machine learning. 5th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1633-1640). https://doi.org/10.1109/ICICCS51141.2021.9432078
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c3cd9700-e1a4-43d4-9277-3cb2932e7698