Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 3 | 58--66
Tytuł artykułu

Simulation and Experimental Study of the Termo-Mechanical Effect of the Milling Process of 7075 Aluminium Alloy

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study combined simulation and experimental tests to analyse the cutting performance of three solid carbide end mills with distinct geometries during the milling of the 7075 aluminium alloy. For the tests, three uncoated end mills were employed, which differed in rake angle, clearance angle, and helical pitch. Simulation tests revealed temperature distributions and the resultant cutting forces. The machining with a milling cutter with a higher blade angle was shown to cause an increase in the temperature in the cutting zone. However, during machining with a sharper blade of cutting tool, a decrease of cutting forces was not observed. The simulated temperature distribution on the cutting edge of the cutting tool may justify significant differences in the dynamics of changes in the cutting force components during the period of operational wear.
Słowa kluczowe
Wydawca

Rocznik
Strony
58--66
Opis fizyczny
Bibliogr. 15 poz., fig., tab.
Twórcy
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 12 Al. Powstancow Warszawy street, 35-959 Rzeszów, Poland, witekhab@prz.edu.pl
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 12 Al. Powstancow Warszawy street, 35-959 Rzeszów, Poland, j.lisowicz@prz.edu.pl
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 12 Al. Powstancow Warszawy street, 35-959 Rzeszów, Poland, j.tymczyszyn@prz.edu.pl
Bibliografia
  • 1. Kumar R., Pattnaik S.K., Minz J.K., Padhi S., Sarangi S.K. Influence of cutting parameters on cutting forces and surface roughness in dry turning of Al using PCD and different coated tools. Sādhanā 2019; 44(8): 1–17.
  • 2. Trent E.M., Wright P.K. Machinability. In: Metal Cutting. Fourth. Butterworth–Heinemann 2000; 251–310.
  • 3. Santos M.C., Machado A.R., Sales W.F., Barrozo M.A.S., Ezugwu E.O. Machining of aluminum alloys: a review. International Journal of Advanced Manufacturing Technology 2016; 86(9–12): 3067–80.
  • 4. Zhang P., Song A., Fang Y., Yue X., Wang Y., Yu X. A study on the dynamic mechanical behavior and micro- texture of 6082 aluminum alloy under different direc- tion. Vacuum 2020; 173(December 2019): 109119.
  • 5. Chen X., Tang J., Ding H., Liu A. Experimental study on the evolution of chip morphology, chip formation, and surface topography with cutting parameters, and their relationships in dry milling of cast aluminum alloy with PCD inserter. Journal of Mechanical Science and Technology 2021; 35(4): 1651–62.
  • 6. Bourlet C., Fromentin G., Harika E., Crolet A. Analysis and modeling of burr formation during the plane milling of cast aluminum alloy using polycrystalline diamond tools. Journal of Manufacturing Science and Engineering, Transactions of the ASME 2016; 138(8).
  • 7. Pittalà G.M., Linguanotto S. A study of machinability of Al7075-T6 with solid carbide end mills. Procedia CIRP 2022; 115:148–53.
  • 8. Davim J.P., Maranhão C., Jackson M.J., Cabral G., Grácio J. FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. International Journal of Advanced Manufacturing Technology 2008; 39(11–12): 1093–100.
  • 9. Ostrowski R., Zwolak M., Śliwa R.E. The impact of PCD Wiper blade use on surface roughness of the elements of aluminum 7075 alloy in high speed milling. Mechanik 2015; (12): 47–50.
  • 10. Soares R.B., de Jesus A.M.P., Neto R.J.L., Chirita B., Rosa P.A.R., Reis A. Comparison Between Cemented Carbide and PCD Tools on Machinability of a High Silicon Aluminum Alloy. Journal of Materials Engineering and Performance 2017; 26(9): 4638–57.
  • 11. Reis D.D., Abrão A.M. The machining of aluminium alloy 6351. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2005; 219(1): 27–33.
  • 12. Teicher U., Pirl S., Nestler A., Hellmich A., Ihlenfeldt S. Surface roughness and its prediction in high speed milling of aluminum alloys with PCD and cemented carbide tools. MM Science Journal 2019; 3136–41
  • 13. Żyłka Ł., Flejszar R., Lajmert P. Influence of Cutting-Edge Microgeometry on Cutting Forces in High-Speed Milling of 7075 Aluminum Alloy. Materials 2023; 16(10).
  • 14. Burek J., Plodzien M., Zylka L., Sulkowicz P. High-performance end milling of aluminum alloy: Influence of different serrated cutting edge tool shapes on the cutting force. Advances in Production Engineering And Management 2019; 14(4): 494–506.
  • 15. Ping Z., Yue X., Shuangfeng H., Ailing S., Baos- hun L., Xiao Y. Experiment and simulation on the high-speed milling mechanism of aluminum alloy 7050-T7451 2020; Vacuum, 182(16–19): 109778.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c3bdf77b-61ae-41ad-a07d-f5db92ef8401
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.