Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 44, No. 4 | 445--455
Tytuł artykułu

Trace metal concentrations in free-ranger, tube-dweller chironomid larvae and a weakly polluted fluvial sediment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to analyze macroinvertebrate assemblages dominated by Chironomidae (Diptera) and to assess the protective nature of these midges’ larval tubes against trace metals in the weakly polluted Bzura River. This low order lowland river flows through the Łódź City Municipal Area and is supplied by a large amount of organic matter from ecotones and a polluted roadside. Determination of metal content in sediments and chironomid tissue and tubes was conducted using atomic absorption spectroscopy. Our study has shown that the composition of chironomid assemblages was not determined by trace metals but rather by high organic enrichment, which caused the dominance of two species representing the same trophic group − gathering collectors − but differing in behavior. One of them belongs to free-rangers (Prodiamesa olivacea), while the other (Chironomus riparius) to tube-dweller larvae. Although the accumulation of certain trace metals in the tubes was found, the larvae of both types of behavior had a similar concentration of metals in their tissues, which proves effective metal detoxification in these insects.
Wydawca

Rocznik
Strony
445--455
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
  • Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lódź, ul. Banacha 12/16 90-237 Łódź, Poland, mariagrz@biol.uni.lodz.pl
autor
  • Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lódź, ul. Banacha 12/16 90-237 Łódź, Poland
  • Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
  • Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lódź, ul. Banacha 12/16 90-237 Łódź, Poland
Bibliografia
  • [1]. Armitage, P.D., Cranston, P.S. & Pinder, L.C.V. (1995). The Chironomidae. The biology and ecology of non-biting midges. London: Chapman & Hall.
  • [2]. Benke, A. (1993). Concepts and patterns of invertebrate production in running waters. Verhandlungen des Internationalen Verein Limnologie 25: 15-31.
  • [3]. Berg, M.B. (1995). Larval food and feeding behavior. In P.D. Armitage, P.S. Cranston & L.C.V. Pinder (Eds.), The Chironomidae. Biology and ecology of non-biting midges (pp. 136-168). London: Chapman & Hall.
  • [4]. Bervoets, L., Blust, R., De Wit, M. & Verheyen, R. (1997). Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environ. Pollut. 95: 345-356. DOI: 10.1016/S0269-7491(96)00134-0.
  • [5]. Bervoets, L., Solis, D., Romero, A.M., Van Damme, PA. & Ollevier, F. (1998). Trace metal levels in chironomid larvae and sediments from a Bolivian River: impact of mining activities. Ecotox. Environ. Safe. 41: 275-283. DOI: 10.1006/ eesa.1998.1707.
  • [6]. Brennan, A. & Mclachan, A.J. (1979). Tubes and tube-building in a lotic chironomid (Diptera) community. Hydrobiologia 67: 173-178. DOI: 10.1007/BF00126716.
  • [7]. Broza, M., Halpern, M. & Inbar, M. (2000). Non-biting midges (Diptera; Chironomidae) in waste stabilization ponds: an intensifying nuisance in Israel. Water Science & Technology 42: 71-74.
  • [8]. Chaloner, D.T. & Wotton, R.S. (1996). Tube building by larvae of 3 species of midge (Diptera: Chironomidae). J. N. Am. Benthol. Soc. 15: 300-307. DOI: 10.2307/1467278.
  • [9]. Cummins, K.W. (1962). An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am. Midl. Nat. 67: 477-504. DOI: 10.2307/2422722.
  • [10]. Cummins, K.W., Matousek, J. & Shackelford, A. (2005). Invertebrate functional group analysis for the freshwater creek watershed. Arcata, USA: Institute for River Ecosystems, Humbold State University.
  • [11]. Czerniawska-Kusza, I. (2007). Exploitation of changes in the structure of benthic macroinvertebrate and of the occurrence of deformations in Chironomus sp. larvae for assessing the ecological state of lowland rivers. In C. Rosik-Dulewska & M. Głowacki (Eds.), Environmental protection at university studies of nature (pp. 229-239). Opole: University of Opole (In Polish).
  • [12]. De Bisthoven, L.J., Van Looy, E., Ceusters, R., Gullentrops, F. & Ollevier, F. (1992). Densities ofProdiamesa olivacea (Meigen) (Diptera: Chironomidae) in a second order stream, the Laan (Belgium): relation to river dynamics. Neth. J. Aquatic Ecol. 26: 485-490.
  • [13]. Dukowska, M. & Grzybkowska, M. (2014). Coexistence of fish species in a large lowland river: food niche partitioning between small-sized percids, cyprinids and sticklebacks in submersed macrophytes. PLoS ONE 9(11). DOI:10.1371/ journal.pone.0109927.
  • [14]. Dukowska, M., Grzybkowska, M., Marszał, L. & Zięba, G. (2009). The food preferences of three-spined stickleback, Gasterosteus aculeatus L., downstream of a dam reservoir. Oceanol. Hydrobiol. Stud. 38(2): 39-50. DOI: 10.2478/ v10009-009-0020-x.
  • [15]. Dukowska, M., Michałowicz, J. & Grzybkowska, M. (2012). Metal accumulation in sediments and insect larvae in weakly polluted small lowland river. Pol. J. Ecol. 60(2): 351-362.
  • [16]. EU FWD Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. OJ L 327: 1-87.
  • [17]. Farag, A.M., Nimick, D.A., Kimball, B.A., Church, S.E., Harper, D.D. & Brumbaugh, W.G. (2007). Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River Watershed, Montana, and the role of colloids in metal uptake. Arch. Environ. Contam. Toxicol. 52: 397-409. DOI: 10.1007/s00244-005-0021-z.
  • [18]. Ferrington, L.C.Jr. (1992). Habitat and sediment preferences of Axarus festivus larvae. Neth. J. Aquatic Ecol. 26: 347-354. DOI: 10.1007/BF02255261.
  • [19]. Ferrington, L.C.Jr (2008). Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447-445. DOI: 10.1007/978-1-4020- 8259-7_45.
  • [20]. Grzybkowska, M. (1995). Impact of human-induced flow perturbation on the chironomid communities in the first order stream section of the Bzura River (Central Poland). In P. Cranston (Ed.), Chironomids - from genes to ecosystems (pp. 247-253). Melbourne, Australia: CSIRO Publications.
  • [21]. Grzybkowska, M. & Głowacki, Ł. (2011). Chironomidae (Diptera) diversity in lowland rivers of various orders and of different levels of human impact in central Poland. In X. Wang & W Liu (Eds.), Proceedings of the 17th International Symposium on Chironomidae - Contemporary chironomid studies (pp. 282-295). Tianjin, China: Nankai University Press.
  • [22]. Grzybkowska, M., Kurzawski, M. & Dukowska, M. (2012). Response of Chironomidae (Diptera) to impoundments in small lowland rivers. In T. Ekrem, E. Stur & K. Agaard (Eds.), Proceedings of the 18th International Symposium on Chironomidae - Fauna norvegica 31 (pp. 25-33). Trondheim: NTNU. DOI: 10.5324/fn.v31i0.1379.
  • [23]. Halpern, M., Gasith, A. & Broza, M. (2002). Does the tube of a benthic chironomid larva play a role in protecting its dweller against chemical toxicants? Hydrobiologia 470: 49-55. DOI: 10.1023/A:1015665027535.
  • [24]. Harding, J.S. (2005). Impact of metals and mining on stream communities. In T.A. Moore, A. Black, J.A. Centeno, J.S. Harding & D.A. Trumm (Eds.), Metal contaminants in New Zealand (pp. 343-357). Christchurch: Resolutionz press.
  • [25]. Hershey, A.E. & Dodson, S.I. (1987). Predator avoidance by Cricotopus: cyclomorphopsis and the importance of being big and hairy. Ecology 68: 913-920. DOI: 10.2307/1938362.
  • [26]. Janssen, R.P.T., Posthuma, L., Baerselman, R., Den Hollander, H.A., Van Veen, R.P.M. & Peijnenburg, WJ.G.M. (1997). Equilibrium partitioning of heavy metals in dutch field soils. II. Prediction of metal accumulation in earthworms. Environ. Toxicol. Chem. 16: 2479-2488. DOI: 10.1002/ etc.5620161207.
  • [27]. Johnson, R.K., Wiederholm, T. & Rosenberg, D.M. (1993). Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In D.M. Rosenberg & VH. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 40-125). London: Chapman & Hall.
  • [28]. Kucuksezgin, F., Uluturhan, H. & Batki, H. (2008). Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environ. Monit. Assess. 141: 213-225. DOI: 10.1007/s10661-007-9889-6.
  • [29]. Lindegaard, C. (1995). Classification of water-bodies and pollution. In P.D. Armitage, P.S. Cranston & L.C.V Pinder (Eds.), The Chironomidae. Biology and ecology of non-biting midges (pp. 385-404). London: Chapman & Hall.
  • [30]. Lindegaard, C. & Brodersen, K.P. (1995). Distribution of Chironomidae (Diptera) in the river continuum. In P. Cranston (Ed.), Chironomids: from genes to ecosystems (pp. 257-271). Melbourne, Australia: CSIRO Publications.
  • [31]. Makino, W., Kato, H., Takamura, N., Mizutani, H., Katano, N. & Mikami, H. (2001). Did chironomid emergence release Daphnia from fish predation and lead to Daphnia-driven clear-water phase in Lake Towada, Japan? Hydrobiologia 442: 309-317. DOI: 10.1023/A:1017532717135.
  • [32]. Martinez, E.A., Moore, B.C., Schaumloffel, J. & Dasgupta, N. (2002). The potential association between menta deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Arch. Environ. Contam. Toxicol. 42: 286-291. DOI: 10.1007/s00244-001-0190-0.
  • [33]. Mckie, B.G. (2004). Disturbance and investment: developmental responses of tropical lotic midges to repeated tube destruction in the juvenile stages. Ecol. Entomol. 29: 457-466. DOI: 10.1111/j.0307-6946.2004.00622.x.
  • [34]. Minshall, G.W. & Robinson, C.T. (1998). Macroinvertebrate community structure in relation to measures of lotic habitat heterogeneity. Fundam. Appl. Limnol. 141: 129-151.
  • [35]. Mousavi, S.K., Primicerio, R. & Amundsen, P. (2003). Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. Sci. Total Environ. 307: 93-110. DOI: 10.1016/ S0048-9697(02)00465-5.
  • [36]. Muscatello, J.R. & Liber, K. (2010). Uranium uptake and depuration in aquatic invertebrate Chironomus tentans. Environ. Pollut. 158: 1696-1701. DOI: 10.1016/j. envpol.2009.11.032.
  • [37]. Nogaro, G., Mermillod-Blondin, F., Franc, F., Caillet, O., Gaudet, J.P., Lafont, M. & Gibert, J. (2006). Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshwater Biol. 51: 1458-1473. DOI: 10.1111/j.1365-2427.2006.01577.x.
  • [38]. Ölafsson, J.S. & Paterson, D.M. (2004). Alteration of biogenic structure and physical properties by tube-building chironomid larve in cohesive sediments. Aquatic Ecol. 38: 219-229. DOI: 10.1023/B:AECO.0000032050.10546.bb.
  • [39]. Osmulski, P. & Leyko, W. (1986). Structure, function and physiological role of Chironomus hemoglobin. Comp. Biochem. Physiol. B: Comp. Biochem. 85: 701-722. DOI: 10.1016/0305-0491(86)90166-5.
  • [40]. Petersen, R.C., Cummins, K.W. & Ward, G.M. (1989). Microbial and animal processing of detritus in a woodland stream. Ecol. Monograph. 59: 21-39. DOI: 10.2307/2937290.
  • [41]. Poulton, B.C., Monda, D.P., Woodward, D.F., Wildhaber, M.L. & Brumbaugh, W.G. (1995). Relations between benthic community structure and metals concentrations in aquatic macroinvertebrates: Clark Fork River, Montana. J. Fresh. Ecol. 10: 277-293. DOI: 10.1080/02705060.1995.9663447.
  • [42]. Quinn, J.M. & Hickey, C.W (1990). Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in New Zealand rivers. N. Z. J. Mar. Freshwat. Res. 24: 387-409. DOI: 10.1080/00288330.1990.9516433.
  • [43]. Rainbow, P.S. (1996). Heavy metals in aquatic invertebrates. In W.N. Beyer, G.H. Heinz & A.M. Redmon-Norwood (Eds.), Environmental contaminants in wildlife (pp. 405-425). Boca Raton, USA: Lewis Publisher.
  • [44]. Schaller, J., Brackhage, C. & Dudel, E.G. (2011). Invertebrates minimize accumulation of metals and metalloids in contaminated environments. Water Air Soil Pollut. 218: 227¬233. DOI: 10.1007/s11270-010-0637-0.
  • [45]. Smolders, A.J.P, Lock, R.A.C., Van der Velde, G., Hoyos, R.I.M. & Roelofs, J.G.M. (2003). Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Arch. Environ. Contam. Toxicol. 44: 314-323. DOI: 10.1007/s00244-002-2042-1.
  • [46]. StatSoft Inc. (2011). STATISTICA (data analysis software system), version 10.
  • [47]. Szyszlak-Bargłowicz, J., Słowik, T., Zając, G. & Piekarski, W. (2013). The Content of Heavy Metals in the Drainage Ditches by Communication Routes. Annual Set The Environment Protection 15: 2309-2323 [English summary]. Retrieved: March 15, 2015, from http://www.ros.edu.pl/index.php/RO/ article/view/182/174.
  • [48]. Tang, H., Song, M.Y., Cho, W.S., Park, Y.S. & Chon, T.S. (2010). Species abundance distribution of benthic chironomids and other macroinvertebrates across different levels of pollution in streams. Ann. Limnol.-Int. J. Lim. 46: 53-66. DOI: 10.1051/ limn/2009031.
  • [49]. Tokeshi, M. (1995). Species interactions and community structure. In P.D. Armitage, P.S. Cranston & L.C.V. Pinder (Eds.), The Chironomidae. Biology and ecology of non-biting midges (pp. 297-335). London: Chapman & Hall.
  • [50]. Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedel, J.R. & Cushing, C.E. (1980). The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130-137. DOI: 10.1139/f80-017.
  • [51]. Vedamanikam, V.J. & Shazili, N.A.M. (2009). The chironomid larval tube, a mechanism to protect the organism from environmental disturbances? Toxicol. Environ. Chem. 91(1): 171-176. DOI: 10.1080/02772240802074934.
  • [52]. Walshe, B.M. (1950). The feeding habits of certain chironomid larvae (subfamily Tendipedinae). Proceedings of the Zoological Society of London 121: 63-79. DOI: 10.1111/ j.1096-3642.1951.tb00738.x.
  • [53]. Wiederholm, T. (1984). Responses of aquatic insects to environmental pollution. In D.M. Rosenberg & V.H. Resh (Eds.), The ecology of aquatic insects (pp. 508-557). New York, USA: Praeger.
  • [54]. Winberg, G.G. (1978). Experimental application of various systems of biological indication of water pollution. In D.I. Mount (Ed.), Proceeding of first and second USA – USSR symposium on effect of pollutants upon aquatic ecosystems (pp. 14-149). Duluth, USA: Environmental Research Laboratory, US Environmental Protection Agency.
  • [55]. Winner, R.W., Boesel, M.V. & Farrell, M.P. (1980). Insect community structure as an index of heavy metal pollution in lotic ecosystems. Can. J. Fish Aquat. Sci. 37: 647-655. DOI: 10.1139/f80-081.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c3a54684-5fae-483b-9845-2e94bedc21b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.