Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 102, nr 2 | 56--67
Tytuł artykułu

Selection of gensets using multicriteria analysis

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a procedure for the optimal selection of diesel generators used to supply electrical units in military camps. Using a multi-criteria analysis based on the criteria presented in the paper, a new method is introduced that's not been used before for making decisions on optimal equipment. Daily load curves were created for the selection of diesel generators. These curves, together with the performance diagrams, served as the basis for calculating diesel consumption. The results allow an accurate assessment of the relative importance of the criteria used in the multi-criteria analysis. In addition to fuel consumption, other criteria such as maintenance costs, reliability, noise level, etc. were also examined. Their relative importance was assigned on the basis of technical documentation and existing maintenance records showing the frequency of breakdowns and maintenance costs. The AHP method was used to solve problems with multiple criteria. The results were processed using Expert Choice software. The analysis showed that an appropriate choice of diesel generator power can lead to lower fuel consumption. The results based on the established criteria show that the optimal choice is a 100 kW diesel generator.
Wydawca

Rocznik
Strony
56--67
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electrical Engineering, Computer Science and Information Technology, Osijek, 31000, Croatia
  • Faculty of Electrical Engineering, Computer Science and Information Technology, Osijek, 31000, Croatia
Bibliografia
  • [1] Makasheva S., Pinchukov P.: Autonomous power supply technology in term of natural and technogenic disasters. MATEC Web of Conferences 265, January 2019.
  • [2] Berardi U., Tomassoni E., Khaled K.: A Smart Hybrid Energy System Grid for Energy Efficiency in Remote Areas for the Army. Energies, Evaluation of Energy Efficiency and Flexibility in Smart Buildings 2020, 13(9) 2279.
  • [3] Anglani N., Oriti G., Colombini M.: Optimized Energy Management System to Reduce Fuel Consumption in Remote Military Microgrids. IEEE Transactions on Industry Applications PP(99):1-1, July 2017.
  • [4] Touš M., Máša V., Vondra M.: Energy and water savings in military base camps. Energy Systems 2019.
  • [5] Kelly R. L., Oriti G., Julian A. L.: Reducing Fuel Consumption at a Remote Military Base: Introducing an energy management system. IEEE Electrification Magazine, 2013, 1(2), 30–37.
  • [6] Wadumesthrige K., Johnson N., Winston-Galant M., Zeng S., Sattler E., Salley S. O., Simon Ng K. Y.: Performance and durability of a generator set CI engine using synthetic and petroleum based fuels for military applications. Applied Energy, 2010, 87(5), 1581–1590.
  • [7] Marqusee J., Jenket D.: Reliability of emergency and standby diesel generators: Impact on energy resiliency solutions, Applied Energy 2020, 268.
  • [8] Elia1 S., Santini E., Tobia M.: Comparison between Different Electrical Configurations of Emergency Diesel Generators for Redundancy and Reliability Improving. Periodica Polytechnica Electrical Engineering and Computer Science 2018, 62(4), pp. 144-148.
  • [9] Satsangi D.P., Tiwari N.: Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. Fuel, 2018, 221, 44-60.
  • [10] Askarzadeh A.: Distribution generation by photovoltaic and diesel generator systems: Energy management and size optimization by a new approach for a stand-alone application. Energy, Pergamon, 2017, 122, 542–551.
  • [11] Cristóbal-Monreal I. R., Dufo-López R., Optimisation of photovoltaic–diesel–battery stand-alone systems minimising system weight, Energy Conversion and Management, 2016, 119, 279–288.
  • [12] Issa M., Ibrahim H., Lepage R., Ilinca A.: A Review and Comparison on Recent Optimization Methodologies for Diesel Engines and Diesel Power Generators. Journal of Power and Energy Engineering 2019, 7, 31-56.
  • [13] Seme S., Sredenšek K., Praunseis Z., Štumberger B., Hadžiselimović M.: Optimal price of electricity of solar power plants and small hydro power plants – Technical and economical part of investments. Energy, 2018, 157, 87–95.
  • [14] Roy B., Zopounidis C., Pardalos P. M.: Handbook of Multicriteria Analysis, 1 ed., Springer-Verlag Berlin Heidelberg, 2010.
  • [15] Engels M., Boyd P. A., Koehler T. M.: Smart and Green Energy (SAGE) for Base Camps Final Report. Pacific Northwest National Laboratory Richland, Washington, 2014. https://www.pnnl.gov › main › external › PNNL-23133, August 2019.
  • [16] Adaramola M. S., Paul S. S., Oyewola O. M.: Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. Energy for Sustainable Development, 2014, 19, 72-82.
  • [17] Klanfar M., Korman T., Kujundžić T.: Fuel consumption and engine load factors of equipment in quarrying of crushed stone. Tehnicki vjesnik-Technical Gazette, 2016, 23(1), 163-169.
  • [18] Jevtić, J., Gligorijević, R., Borak D.: Fuel efficiency of conventional design tractors diesel engines in relation to new design. Thermal Science, 2006, 10(4), 229-237.
  • [19] Valente O. S., Jose da Silva M., Duarte Pasa V. M.: Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel, 2010, 89, 3637-3642.
  • [20] Barešić D., Hederić Ž., Hadžiselimović M.: Exploring the Possibilities of Adjusting Gensets to NATO Requirements. Transactions of FAMENA, 2019, 43(1), 1-14.
  • [21] Karczewski M.: Evaluation of the diesel engine feed by unified battlefield fuel F-34/F-35 mixed with biocomponents. Combustion Engines. 2019, 178(3), 240-246.
  • [22] Yanga W., Taya K. L., Konga K. W.: Impact of Various Factors on the Performance and Emissions of Diesel Engine Fueled by Kerosene and Its Blend with Diesel. Energy Procedia 142 (2017) 1564–1569.
  • [23] Stiel A., Skyllas-Kazacos M.: Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model. Applied Sciences, 2012, 2, 726-737.
  • [24] Carvill J.: Thermodynamics and heat transfer. Mechanical Engineer's Data Handbook (102-145), Elsevier, 1993.
  • [25] Saaty T. L., Vargas L. G.: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Springer US, 2001.
  • [26] Üsküdar A., Türkan Y. S., Özdemr Y. S., Öz A. H.: Fuzzy AHP - Center of Gravity Method Helicopter Selection and Application, 8th International Conference on Industrial Technology and Management, 2019.
  • [27] Xi X., Qin Q.: Product quality evaluation system based on AHP fuzzy comprehensive evaluation. Journal of Industrial Engineering and Management, 2013, 6(1), 356-366.
  • [28] Saaty T. L.: Decision making with the analytic hierarchy process. International Journal of Services Sciences, 2008, 1(1), 83-98.
  • [29] Briš Alić M., Optimalizacija izbora projekta korištenja geotermalne energije metodama višekriterijalne analize. Doctoral Dissertation, 2012, Faculty of Economics in Osijek.
  • [30] Alonso J. A., Lamata M. T.: Consistency in the Analytic Hierarchy Process: a New Approach. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2006, 14(4), 445-459.
  • [31] Starčević S., Bojović N., Junevičius R., Skrickij V.: Analytical hierarchy process method and data envelopment analysis application in terrain vehicle selection. Transport, 2019, 34(5), 600-616.
  • [32] Katrašnik T., Medica V., Trenc F.: Analysis of the dynamic response improvement of a turbocharged diesel engine driven alternating current generating set. Energy Conversion and Management, 2005, 46(18-19), 2838-2855.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c372b893-ef40-4c09-b687-466844e01233
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.