Czasopismo
2018
|
Vol. 36, No. 2
|
337--340
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Photovoltage formation across Si p-n junction exposed to laser radiation is experimentally investigated. Illumination of the junction with 1.06 μm wavelength laser radiation leads to formation of classical photovoltage Uph due to intense electronhole pair generation. When the photon energy is lower than the semiconductor forbidden energy gap, the photovoltage U is found to consist of two components, U = Uf + Uph. The first Uf is a fast one having polarity of thermoelectromotive force of hot carriers. The second Uph is classical photovoltage with polarity opposite to Uf. It is found that Uf is linearly dependent on laser intensity. The classical photovoltage is established to decrease with the rise of radiation wavelength due to decrease in two-photon absorption coefficient with wavelength. Predominance of each separate component in the formation of the net photovoltage depends on both laser wavelength and intensity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
337--340
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania, steponas.asmontas@ftmc.lt
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
- V. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, Kyiv, Ukraine
Bibliografia
- [1] POLMAN A., KNIGHT M., GARNETT E.C., EHLER B., SINKE W.C., Science, 352 (2016), aad4424.
- [2] HIRST L.C., EKINS-DAUKES N.J., Prog. Photovolt. Res. Appl., 19 (2011), 286.
- [3] ROSS R.T., NOZIK A.J., J. Appl. Phys., 53 (1982), 3813.
- [4] KIRK A.P., FISCHETTI M.V., Phys. Rev. B, 86 (2012), 165206-1.
- [5] HIRST L.C., FUJII H., WANG Y., SIGIYAMA M., EKINS-DAUKES N.J., IEEE J. Photovolt., 4 (2014), 244.
- [6] RODIERE J., LOMBEZ L., LE CORRE A., DURAND O., GUILLEMOLES J.F., Appl. Phys. Lett., 106 (2015), 183901.
- [7] GRADAUSKAS J., ŠIRMULIS E., AŠMONTAS S., SUŽIEDĖLIS A., DASHEVSKY Z., KASIYAN V., Acta Phys. Pol. A, 119 (2011), 273.
- [8] AŠMONTAS S., GRADAUSKAS J., SUŽIEDĖLIS A., ŠILĖNAS A., ŠIRMULIS E., VAIČIKAUSKAS V., VAIČIŪNAS V., ŽALYS O., FEDORENKO L., BULAT L., Opt. Quant. Electron., 48 (2016), 448.
- [9] BRISTOW A.D., ROTENBERG N., DRIEL VAN H.M., Appl. Phys. Lett., 90 (2007), 191104.
- [10] SPITZER W., FAN M.Y., Phys. Rev., 108 (1957), 268.
- [11] DARGYS A., KUNDROTAS J., Handbook of physical properties of Ge, Si, GaAs and InP, Science and Encyclopedia Publishers, Vilnius, 1994.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c36b67fe-2f88-4f43-b76b-868a43c21299