Czasopismo
2020
|
Vol. 175, nr 1-4
|
281--299
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Network controllability focuses on the concept of driving the dynamical system associated to a directed network of interactions from an arbitrary initial state to an arbitrary final state, through a well-chosen set of input functions applied in a minimal number of so-called input nodes. In earlier studies we and other groups demonstrated the potential of applying this concept in medicine. A directed network of interactions may be built around the main known drivers of the disease being studied, and then analysed to identify combinations of drug targets controlling survivability-essential genes in the network. This paper takes the next step and focuses on patient data. We demonstrate that comprehensive protein-protein interaction networks can be built around patient genetic data, and that network controllability can be used to identify possible personalised drug combinations. We discuss the algorithmic methods that can be used to construct and analyse these networks.
Czasopismo
Rocznik
Tom
Strony
281--299
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
- Department of Information Systems, Polytechnic University of Madrid, Spain, joseangel.sanchez.martin@alumnos.upm.es
autor
- Department of Mathematics and Statistics, University of Turku, Finland , ion.petre@utu.fi
- National Institute for Research and Development in Biological Sciences, Romania
Bibliografia
- [1] Winslow RL, Trayanova N, Geman D, Miller MI. Computational medicine: translating models to clinical care. Sci Transl Med, 2012. 4(158):158rv11. doi:10.1126/scitranslmed.3003528.
- [2] 2019. URL https://www.icpermed.eu/en/activities-vision-paper.php.
- [3] Xie L, Draizen EJ, Bourne PE. Harnessing Big Data for Systems Pharmacology. Annu Rev Pharmacol Toxicol, 2017. 57:245-262. doi:10.1146/annurev-pharmtox-010716-104659.
- [4] MacLean AL, Harrington HA, Stumpf MPH, Byrne HM. Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study. Methods Mol Biol, 2016. 1386:405-439. doi:10.1007/978-1-4939-3283-2{\_}18.
- [5] Gratie DE, Iancu B, Petre I. ODE Analysis of Biological Systems, pp. 29-62. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-38874-3, 2013. doi:10.1007/978-3-642-38874-3_2. URL https://doi.org/10.1007/978-3-642-38874-3_2.
- [6] Wang RS, Saadatpour A, Albert R. Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol, 2012. 9(5):055001. doi:10.1088/1478-3975/9/5/055001.
- [7] Bae H, Monti S, Montano M, Steinberg MH, Perls TT, Sebastiani P. Learning Bayesian Networks from Correlated Data. Scientific Reports, 2016. 6(1):25156. doi:10.1038/srep25156. URL https://doi.org/10.1038/srep25156.
- [8] Bartocci E, Lió P. Computational Modeling, Formal Analysis, and Tools for Systems Biology. PLOS Computational Biology, 2016. 12(1):1-22. doi:10.1371/journal.pcbi.1004591. URL https://doi.org/10.1371/journal.pcbi.1004591.
- [9] Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet, 2011. 12(1):56-68. doi:10.1038/nrg2918.
- [10] Renatino Canevarolo R, Sudalagunta PR, Coelho Siqueira Silva MD, Meads MB, Granados P, Berglund A, Kulkarni A, Dai H, Dalton WS, Petre I, Shain KH, Siqueira Silva A. A Systems Biology Approach to Identify Mechanisms of Therapy Resistance in Multiple Myeloma. Blood, 2018. 132(Supplement 1):3266-3266. doi:10.1182/blood-2018-99-118784. URL https://doi.org/10.1182/blood-2018-99-118784.
- [11] Meads MB, Renatino Canevarolo R, Sudalagunta PR, Oliveira PS, Magaletti DM, Fang B, Coelho Siqueira Silva MD, Kulkarni A, Dai H, Dalton WS, Petre I, Koomen JM, Siqueira Silva A, Shain KH. Systems Biology Analysis Identifies Targetable Vulnerability Networks to Proteasome Inhibitors in Multiple Myeloma. Blood, 2018. 132(Supplement 1):950-950. doi:10.1182/blood-2018-99-120269. URL https://doi.org/10.1182/blood-2018-99-120269.
- [12] Younesi E, Hofmann-Apitius M. From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA J, 2013. 4(1):23. doi:10.1186/1878-5085-4-23.
- [13] Kanhaiya K, Czeizler E, Gratie C, Petre I. Controlling Directed Protein Interaction Networks in Cancer. Scientific Reports, 2017. 7(1):10327. doi:10.1038/s41598-017-10491-y. URL https://doi.org/10.1038/s41598-017-10491-y.
- [14] Czeizler E, Wu KC, Gratie C, Kanhaiya K, Petre I. Structural Target Controllability of Linear Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018. 15(4):1217-1228. doi:10.1109/TCBB.2018.2797271.
- [15] Liu YY, Slotine JJ, Barabási AL. Controllability of complex networks. Nature, 2011. 473(7346):167-173. doi:10.1038/nature10011.
- [16] Gao J, Liu YY, D’Souza RM, Barabási AL. Target control of complex networks. Nature Communications, 2014. 5:5415. doi:10.1038/ncomms6415.
- [17] Guo WF, Zhang SW, Wei ZG, Zeng T, et al. Constrained target controllability of complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2017.
- [18] Liu YY, Slotine JJ, Barabási AL. Controllability of complex networks. Nature, 2011. 473(7346):167-173. doi:10.1038/nature10011.
- [19] Yan G, Vértes PE, Towlson EK, Chew YL, Walker DS, Schafer WR, Barabási AL. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature, 2017. 550(7677):519-523. doi:10.1038/nature24056. URL https://doi.org/10.1038/nature24056.
- [20] Barabási DL, Barabási AL. A Genetic Model of the Connectome. Neuron, 2019. doi:https://doi.org/10.1016/j.neuron.2019.10.031. URL http://www.sciencedirect.com/science/article/pii/S0896627319309262.
- [21] Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Getz G, Golub TR. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell, 2014. 25(1):91-101. doi:10.1016/j.ccr.2013.12.015.
- [22] Kalman RE, Ho YC, Narendra KS. Controllability of linear dynamical systems. Contributions to Differential Equations, 1963. 1:189-213.
- [23] Gunning R, Rossi H. Analytic functions of several complex variables. Prentice-Hall, 1965.
- [24] Lin CT. Structural controllability. IEEE Trans. Automat. Contr, 1974. 19:201-208.
- [25] Poljak S, Murota K. Note on a graph-theoretic criterion for structural output controllability. IEEE Transactions on Automatic Control, 1990. 35(8):939-942. doi:10.1109/9.58507.
- [26] Wishart DS, Feunang YD, Guo AC, Marcu A, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 2017. 46:1074-1082. doi:10.1093/nar/gkx1037.
- [27] Kanhaiya K, Rogojin V, Kazemi K, Czeizler E, Petre I. NetControl4BioMed: a pipeline for biomedical data acquisition and analysis of network controllability. BMC Bioinformatics, 2018. 19. doi:https://doi.org/10.1186/s12859-018-2177-3.
- [28] Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM. Identification and characterization of essential genes in the human genome. Science, 2015. 350(6264):1096-1101. doi:10.1126/science.aac7041.
- [29] Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR. Gene essentiality and synthetic lethality in haploid human cells. Science, 2015. 350(6264):1092-1096. doi:10.1126/science.aac7557.
- [30] Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S, Mero P, Dirks P, Sidhu S, Roth FP, Rissland OS, Durocher D, Angers S, Moffat J. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015. 163(6):1515-1526. doi:10.1016/j.cell.2015.11.015.
- [31] Koh JLY, Brown KR, Sayad A, Kasimer D, Ketela T, Moffat J. COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines. Nucleic Acids Res, 2012. 40(Database issue):D957-63. doi:10.1093/nar/gkr959.
- [32] Matthews GM, de Matos Simoes R, Hu Y, Sheffer M, et al. Characterization of lineage vs. context-dependent essential genes in multiple myeloma using CRISPR-Cas9 genome editing. Cancer Research, 2017. 77(13). doi:10.1158/1538-7445.AM2017-LB-118.
- [33] Tiedemann RE, Zhu YX, Schmidt J, Shi CX, et al. Identification of Molecular Vulnerabilities in Human Multiple Myeloma Cells by RNA Interference Lethality Screening of the Druggable Genome. Cancer Research, 2012. 72. doi:10.1158/0008-5472.CAN-11-2781.
- [34] Krönke J, Hurst SN, Ebert BL. Lenalidomide induces degradation of IKZF1 and IKZF3. Oncoimmunology, 2014. 3(7). doi:10.4161/21624011.2014.941742.
- [35] S K, J C, T C, A G, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Research, 2018. 47:1102-1109. doi:10.1093/nar/gky1033.
- [36] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000. 28(1):27-30. doi:10.1093/nar/28.1.27.
- [37] Türei D, Korcsmáros T, Saez-Rodriguez J. OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nature Methods, 2016. 13(12):966-967. doi:10.1038/nmeth.4077. URL https://doi.org/10.1038/nmeth.4077.
- [38] Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock REW, Brinkman FSL, Lynn DJ. InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids Res, 2013. 41(Database issue):D1228-33. doi:10.1093/nar/gks1147.
- [39] Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, Peluso D, Calderone A, Castagnoli L, Cesareni G. SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Research, 2019. doi:10.1093/nar/gkz949. Gkz949, http://oup.prod.sis.lan/nar/advance-article-pdf/doi/10.1093/nar/gkz949/30324784/gkz949.pdf, URL https://doi.org/10.1093/nar/gkz949.
- [40] 2019. URL https://oldnetcontrol.combio.org/.
- [41] URL https://tinyurl.com/sjofthz.
- [42] Shannon P, Markiel A, Ozier O, Baliga NS, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 2003. pp. 2498-2504. doi:10.1101/gr.1239303.
- [43] Liu Y, Zhang Y, Wu H, Li Y, Zhang Y, Liu M, Li X, Tang H. miR-10a suppresses colorectal cancer metastasis by modulating the epithelial-to-mesenchymal transition and anoikis. Cell Death Dis, 2017. 8(4):e2739. doi:10.1038/cddis.2017.61.
- [44] Hashimoto Y, Shiina M, Tanaka Y, Dasgupta P, Kulkarni P, Kato T, Wong RK, Shahryari V, Maekawa S, Yamamura S, Bhagiratha D, Saini S, Deng G, Tabatabai L, Majid S, Dahiya R, Dahiya R. Abstract 761: Up-regulation of miR-10a affect on prostate cancer racial disparity. Cancer Research, 2019. 79(13 Supplement):761-761. doi:10.1158/1538-7445.AM2019-761. https://cancerres.aacrjournals.org/content, URL https://cancerres.aacrjournals.org/content/79/13_Supplement/761.
- [45] Umezu T, Imanishi S, Yoshizawa S, Kawana C, Ohyashiki JH, Ohyashiki K. Induction of multiple myeloma bone marrow stromal cell apoptosis by inhibiting extracellular vesicle miR-10a secretion. Blood Adv, 2019. 3(21):3228-3240. doi:10.1182/bloodadvances.2019000403.
- [46] Umezu T, Imanishi S, Yoshizawa S, Kawana C, Ohyashiki JH, Ohyashiki K. Induction of multiple myeloma bone marrow stromal cell apoptosis by inhibiting extracellular vesicle miR-10a secretion. Blood Advances, 2019. 3(21):3228-3240. doi:10.1182/bloodadvances.2019000403. https://ashpublications.org/bloodadvances/article-pdf/3/21/3228/1506257/advancesadv2019000403.pdf, URL https://doi.org/10.1182/bloodadvances.2019000403.
- [47] Neumann C, Zehentmaier G, Danhauser-Riedl S, Emmerich B, Hallek M. Interleukin-6 induces tyrosine phosphorylation of the Ras activating protein Shc, and its complex formation with Grb2 in the human multiple myeloma cell line LP-1. Eur J Immunol, 1996. 26(2):379-384. doi:10.1002/eji.1830260217.
- [48] Wang M, Wu D, Liu P, Deng J. Silence of MCL-1 upstream signaling by shRNA abrogates multiple myeloma growth. Experimental Hematology & Oncology, 2014. 3(1):27. doi:10.1186/2162-3619-3-27. URL https://doi.org/10.1186/2162-3619-3-27.
- [49] S P, C T, P T, G G, D D, V M, C B, C S, A C, H E. KRAS/NRAS/BRAF Mutations as Potential Targets in Multiple Myeloma. Front. Oncol., 2019. 9(1137).
- [50] Chen X, Liu Y, Yang Z, Zhang J, Chen S, Cheng J. LINC01234 promotes multiple myeloma progression by regulating miR-124-3p/GRB2 axis. American journal of translational research, 2019. 11(10):6600-6618. URL https://www.ncbi.nlm.nih.gov/pubmed/31737211.
- [51] Johnston JR, Chase PB, Pinto JR. Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget, 2017. 9(1):1461-1482. doi:10.18632/oncotarget.22879. URL https://www.ncbi.nlm.nih.gov/pubmed/29416706.
- [52] Sun Z, Schwenzer A, Rupp T, Murdamoothoo D, Vegliante R, Lefebvre O, Klein A, Hussenet T, Orend G. Tenascin-C Promotes Tumor Cell Migration and Metastasis through Integrin ?91-Mediated YAP Inhibition. Cancer research, 2018. 78(4):950-961. doi:10.1158/0008-5472.CAN-17-1597. URL https://www.ncbi.nlm.nih.gov/pubmed/29259017.
- [53] Chen Y, Huang R, Ding J, Ji D, Song B, Yuan L, Chang H, Chen G. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway. Scientific Reports, 2015. 5(1):9925. doi:10.1038/srep09925. URL https://doi.org/10.1038/srep09925.
- [54] Barabasi, Albert. Emergence of scaling in random networks. Science, 1999. 286(5439):509-512. doi:10.1126/science.286.5439.509.
- [55] Júlvez J, Vázquez CR, Mahulea C, Silva M. Continuous Petri Nets: Controllability and Control, pp. 407-428. Springer London, London. ISBN 978-1-4471-4276-8, 2013. doi:10.1007/978-1-4471-4276-8{\_} 20. URL https://doi.org/10.1007/978-1-4471-4276-8_20.
- [56] Carvalho RV, Kleijn J, Meijer AH, Verbeek FJ. Modeling innate immune response to early Mycobacterium infection. Comput Math Methods Med, 2012. 2012:790482. doi:10.1155/2012/790482.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2020).
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c3547de6-2ec4-434b-be32-37de89f0b17e