Warianty tytułu
Wydajność poprawa systemów ułamkowego rzędu przy użyciu adaptacyjnego regulatora PID ułamkowego rzędu
Języki publikacji
Abstrakty
Fractional order systems are widely used in industrial application for its different advantage such us high efficiency, and flexibilities. The applications of fractional order systems in a range of scientific fields have caught the attention of researchers especially in control strategy. The current research work presents the use the fractional adaptive PID controller approach, optimized by genetic algorithm, to improve the performances (rise time, setting time and overshoot) for fractional systems by introducing fractional order integrator and differentiator in the classical feedback adaptive PID controller. To validate the arguments, effectiveness and performances analysis of the proposed approach optimized by genetic algorithm have been studied in comparison to the classical adaptive PID controller. Numerical simulation and analysis are presented to verify the best controller. The Fractional order PID gives the best result in terms of settling time, rise time, overshoot and mean absolute error.
Systemy ułamkowego rzędu są szeroko stosowane w zastosowaniach przemysłowych ze względu na różne zalety, takie jak wysoka wydajność i elastyczność. Zastosowania systemów rzędu ułamkowego w wielu dziedzinach nauki przykuły uwagę badaczy, zwłaszcza w dziedzinie strategii sterowania. Obecna praca badawcza przedstawia wykorzystanie podejścia ułamkowego regulatora adaptacyjnego PID, zoptymalizowanego przez algorytm genetyczny, do poprawy osiągów (czas narastania, czas ustawiania i przeregulowanie) układów ułamkowych poprzez wprowadzenie integratora i układu różniczkowego ułamkowego rzędu do klasycznego regulatora PID z adaptacyjnym sprzężeniem zwrotnym. Aby zweryfikować argumenty, przeprowadzono analizę skuteczności i wydajności proponowanego podejścia zoptymalizowanego za pomocą algorytmu genetycznego w porównaniu z klasycznym adaptacyjnym regulatorem PID. Przedstawiono symulację i analizę numeryczną w celu weryfikacji najlepszego sterownika. PID rzędu ułamkowego daje najlepsze wyniki pod względem czasu ustalania, czasu narastania, przeregulowania i średniego błędu bezwzględnego.
Czasopismo
Rocznik
Tom
Strony
257--260
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Applied Automation and Industrial Diagnostics Laboratory, Faculty of Science and Technology, University of Djelfa, 17000, Algeria, z.asradj@univ-bouira.dz
- Electrical Engineering Department, Faculty of Sciences and Applied sciences, University of Bouira, 10000 - Algeria
autor
- Electrical Engineering Department, Faculty of Sciences and Applied sciences, University of Bouira, 10000 - Algeria, bensafiay@yahoo.fr
autor
- Applied Automation and Industrial Diagnostics Laboratory, Faculty of Science and Technology, University of Djelfa, 17000, Algeria, i.merzouk@univ-djelfa.dz
Bibliografia
- [1] Vinagre, B.M., Chen, Y.Q., Petráš, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Frankl. Inst,340, 349–362( 2003).Article title. Journal 2 (2016), nr. 5, 99–110.
- [2] Bhatt. R., Parmar .G , Gupta .R, Sikander. A, “Application of stochastic fractal search in approximation and control of LTI systems,” In: Microsyst. Technol. 25 ( 2019), 105-114.
- [3] Srinivasan .S, Karunanithi T., “ Design of PI controller for bio-reactors for maximum production rate”, International Journal of Chem-Tech Research, 2 (2010), nr.3, 1679-1685.
- [4] Idir, A., Kidouche, M., Bensafia, Y., Khettab, K, Tadjer, S.A.: Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO. Int. J. Intell. Eng. Syst, 11 (2018), 241–249.
- [5] Oustaloup, A.:Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. Circuits and Systems, IEEE Transactions , (1981),1007–1009.
- [6] Tripathi, R.P., Singh, A.K., Gangwar, P.: Innovation-based fractional order adaptive Kalman filter. Journal of Electrical Engineering 71( 2020), nr. 1, 60–64
- [7] Oustaloup , A., Moreau , X., Nouillant, , M.:The CRONE suspension.Control Engineering Practice 4(1996), nr. 8, 1101-1108.
- [8] Goyal ,V., Mishra, P., Shukla , A., Deolia, V. K., Varshney, A.:A Fractional Order Parallel Control Structure Tuned with Meta-Heuristic Optimization Algorithms for Enhanced Robustness. Journal of Electrical Engineering, 70(2019), nr. 1, 16–24
- [9] Podlubny, I., Dorcak, L., Kostial I.:On fractional derivatives, fractional-order dynamic system and PID-controllers. Proceedings of the 36th conference on decision & control 5 (1997).
- [10] Ladaci . S, Loiseau. J.J, Charef .A, “ Adaptive Internal Model Control with fractional order Parameter ”, Int. J. Adaptive Control and Signal Processing, nr 24,(2010), 944-960.
- [11] Khettab . K , Ladaci . S, Bensafia . Y., “Fuzzy adaptive control of fractional order chaotic systems with unknown control gain sign using a fractional order Nussbaum gain ”, In: IEEE/CAA Journal of Automatica Sinica, 4 (2019), nr. 2, 1-8.
- [12] Monje.C. A., “Fractional-order systems and controls: fundamentals and applications,” Springer, (2010).
- [13] ULLAH . Nasim , WANG . S , KHATTAK .M. I “Fractional Order Fuzzy Backstepping Torque Control of Electrical Load Simulator”, Przegląd Elektrotechniczny, 89 (2013),nr. 5, 237- 240
- [14] Haneet . K, Parul S , Pawanesh . A , “ Analysis of fitness function in genetic algorithms. Journal of Scientific and Technical Advancements", 1( 2015) ,nr . 3 ,87-89.
- [15] Maciej . S, “ Another Approach to the Fractional Order Derivatives, Przegląd Elektrotechniczny, 91 (2015),nr. 2, 153- 156.
- [16] Chen. Y., Vinagre. B. M., and Podlubny .I, “Continued fraction expansion approaches to discretizing fractional order derivatives an expository review,” in Nonlinear Dynamics, vol. 38, no.1–4, (2004), 155-170.
- [17] Oustaloup . A, Levron .F, Mathieu . B and Nanot . F, “ Frequency-Band Complex Non integer Differentiator: Characterization and Synthesis”, IEEE Transactions on Circuits and Systems I, vol.47, n°1, (2000), 25-39.
- [18] Axtell . M, Bise . M.E, " Fractional calculus applications in control systems ”, the IEEE National Aerospace and Electronics Conference, New York, USA, (1990), 563-566.
- [19] Calderon . A. J., Vinagre. B.M. and Feliu . V , “ Fractional order control strategies for power electronic buck converters ”, Signal Processing, vol. 86, (2006), 2803-2819.
- [20] Y. Bensafia , S .Ladaci , K . Khettab ., “ Using a Fractionalized Integrator for Control Performance Enhancement ”, International Journal of Innovative Computing, Information and Control,( 2015).
- [21] Y. Bensafia, K. Khettab, H .Idir, “ An Improved Robust Fractionalized PID Controller for a Class of Fractional-Order Systems with Measurement Noise ”, International Journal of Intelligent Engineering and Systems, DOI: 10.22266/ijies2018.0430.22 ,V 11, No.2, (2018).
- [22] Y. Bensafia, A. Idir, A. Zemmit, K. Khettab, “Performance Improvement of Aircraft pitch angle using the Fractional Order Adaptive PID Controller”, Przegląd Elektrotechniczny, 99 (2023), nr. 5, 98-101.
- [23] Y. Bensafia, T.Boukra, K. Khettab, “Fractionalized PID Control in Multi-model Approach: A New Tool for Detection and Diagnosis Faults of DC Motorr”, Przegląd Elektrotechniczny, 99 (2023),nr. 6, 45-48.
- [24] Sabatier . J , Oustaloup .A, Iturricha . A.G , Levron F. , ‘‘CRONE control of continuous linear time periodic systems: Application to a testing bench ”, ISA Transactions, ( 2003),421- 436.
- [25] Dadras . S, Momeni H.R., ‘‘ Control of a fractional-order economical system ”, Physica 389,( 2010),2434–2442.
- [26] Antonina MALYUSHEVSKAYA, Anna YUSHCHISHINA, Olena MITRYASOVA, Volodymyr POHREBENNYK , Ivan SALAMON, “ Optimization of Extraction Processes of Water-Soluble Polysaccharides under the Electric Field Action”, Przegląd Elektrotechniczny, 97(2021), nr. 12, 73-76.
- [27] Wang .F. S, Juang. W. S, Chan. C. T, “ Optimal tuning of PID controllers for single and cascade control loops”, Chemical Engineering Communications, 132 , (1995),15-34.
- [28] Tenreiro Machado . J. A., “ Calculation of Fractional Derivatives of Noisy Data with Genetic Algorithms”, Nonlinear Dynamics, Springer, 57(2009), nr. 1, 253-260.
- [29] Wang . W., Lu . Y, ‘‘ Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model”, IOP Conf. Series: Materials Science and Engineering 324, (2018).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c33b1916-591d-451f-8202-59f8efbe7058