Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 34, nr 2 | 97--109
Tytuł artykułu

Metody komputerowe w inżynierii powłok ochronnych. Część II. Symulacja procesu natryskiwania plazmowego. Przegląd literatury

Warianty tytułu
EN
Computational methods in protective coatings engineering. Part II. Simulation of plasma spraying process. Literature overview
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wybrane zagadnienia symulacji procesu natryskiwania plazmowego w warunkach ciśnienia atmosferycznego (APS - Atmospheric Plasma Spraying) oraz obniżonego (LPPS - Low Pressure Plasma Spraying). Omówiono sposoby symulacji procesu natryskiwania plazmowego, a także narzędzia stosowane do numerycznej analizy procesu -prognozowania właściwości fizycznych strumienia plazmy, zachowania i właściwości cząstek proszku w strumieniu plazmy, przebiegu procesu osadzania nadtopionych lub całkowicie przetopionych cząstek proszku na powierzchni podłoża oraz charakterystyki budowy ukształtowanej powłoki ochronnej.
EN
The article presents selected problems of simulation of the plasma spraying process under low (LPPS - Low Pressure Plasma Spraying) and atmospheric (APS -Atmospheric Plasma Spraying) pressure. The Simulation methods of the plasma spraying process and tools used to perform its numerical analysis, i.e. forecast the plasma jet properties, the behaviour and properties of the powder particles introduced into the plasma plume, the course ofthe deposition process of molten or partially molten powder particles on the substrate surface and the properties of the obtained coating have been discussed.
Słowa kluczowe
Wydawca

Rocznik
Strony
97--109
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
autor
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska, skot@prz.edu.pl
autor
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska
autor
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska
Bibliografia
  • [1] Kotowski S., Góral M., Nowotnik A., Sieniawski J.: Metody komputerowe w inżynierii powłok ochronnych. Część I. Modelowanie procesu natryskiwania plazmowego. Przegląd Literatury. Inżynieria Materiałowa 2 (2013) (2013) 85+96.
  • [2] Ascher U. M., Petzold L. R.: Computer methods for ordinary differential equations and differential-algebraic equations. Society for Industrial and Applied Mathematics, Philadelphia (1998).
  • [3] "GSL-GNU Scientific Library, GNU Project, Free Software Foundation (FSF)." Web. 16 Jan. 2012. <http://www.gnu.org/software/gsl/>.
  • [4] El-Kaddah N., Mckelliget J., Szekely J.: Heat transfer and fluid flow in plasma spraying. Metallurgical Transactions B 15 (1) (1984) 59+70.
  • [5] Li H. P., Chen X.: Three-dimensional simulation of a plasma jet with transverse particle and carrier gas injection. Thin Solid Films 390 (1-2) (2001) 175+1 80.
  • [6] Khelfi D., El-Hadj A. A., Ait-Messaoudêne N.: Modeling of a 3D plasma thermal spraying and the effect of the particle injection angle. Revue des Energies Renouvelables (CISM”08), Oum El Bouaghi (2008) 205+216.
  • [7] Marchand C., Vardelle A., Mariaux G., Lefort P.: Modelling of the plasma spray process with liquid feedstock injection. Surface and Coatings Technology 202 (18) (2008) 4458+4464.
  • [8] Liu B., Zhang T., Gawne D. T.: Computational analysis of the influence of process parameters on the flow field of a plasma jet. Surface and Coatings Technology 132 (2-3) (2000) 202+216.
  • [9] Lugscheider E., Nickel R.: Finite element simulation of a coating formation on a turbine blade during plasma spraying. Surface and Coatings Technology 174-175 (2003) 475+481.
  • [10] "Code_Satume | Code_Satume" Web. 5 May 2012. <http://code-satume. org/cms/>.
  • [11] "ANSYS - Simulation Driven Product DeVelopment" Web. 5 May 2012. <http://www.ansys .com/Products/Simulation+Technology/ Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent>.
  • [12] "CHAM and PHOENICS" Web. 5 May 2012. <http://www.cham.co.uk/ products.php>.
  • [13] Spalding D. B.: Mathematical modelling of fluid mechanics, heat transfer and mass transfer processes. Mech. Eng. Dept., Rept. HTS/80/1, Imperial College of Science, Technology and Medicine, London (1980).
  • [14] Darwish M., Moukalled F.: A Unified formulation of the segregated class of algorithms for fluid flow at all speeds. Numerical Heat Transfer Part B- fundamentals, Numer Heat Transfer PT B-FUND 37 (1) (2000) 103+139.
  • [15] "Plasma 2000 | Simmakers Ltd. company" Web. 5 May 2012. <http://sim- makers.com/plasma-2000/>.
  • [16] "MSC Software Corporation | Simulating Reality, Delivering Certainty" Web. 5 May 2012. <http://www.mscsoftware.com/product/marc>.
  • [17] Wang G., Chen Y., Zhang H.: Effects of scanning path on the deposition process in rapid plasma spray tooling. Modeling by homogenization theory. Thin Solid Films 435 ( 1-2) (2003) 124+130.
  • [18] CFD Online. Web. 16 Jan. 2012. <http://www.cfd-online.com/>.
  • [19] Selvan B., Ramachandran K., Pillai B., Subhakar D.: Numerical modelling of Ar-NZ plasma jet impinging on a flat substrate. Journal of Thermal Spray Technology 20 (3) (2011) 534+548.
  • [20] Qunbo F., Lu W., Fuchi W.: 3D simulation of the plasma jet in thermal plasma spraying. Journal of Materials Processing Technology 166 (2) (2005) 224+229.
  • [21] Kang C. W., Ng H. W., Yu S. C. M.: Comparative study of plasma spray flow fields and particle behaviour near to flat inclined substrates. Plasma Chemistry and Plasma Processing 26 (2) (2006) 149+175.
  • [22] Remesh K., Ng H. W., Yu S. C. M.: Influence of process parameters on the deposition footprint in plasma-spray coating. Chemistry and Materials Science 12 (3) (2003) 377+392.
  • [23] Kamnis S., Gu S.: Numerical modelling of droplet impingement. Journal of Physics D: Applied Physics 38 (19) (2005) 3664+3673.
  • [24] Li M., Christofides P. D.: Multi-scale modeling and analysis of an industrial HVOF thermal spray process. Chemical Engineering Science 60 (13) (2005) 3649+3669.
  • [25] Li W., Guo X., Yu M., Liao H., Coddet C.: Investigation of impact behaviour of cold-sprayed large annealed copper particles and characterization of coatings. Journal of Thermal Spray Technology 20 ( 1) (2011) 252+259.
  • [26] Kang C. W., Tan J. K., Pan L., Low C. Y., Jaffar A.: Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying. Applied Surface Science 257 (24) (2011) 10363+10372.
  • [27] "Computational Fluid Dynamics Software | FLOW-3D from Flow Science, CFD" Web. 5 May 2012. <http://www.flow3d.com>.
  • [28] Xiong H. B., Zheng L. L., Sampath S., Williamson R. L., Fincke J. R.: Three-dimensional simulation of plasma spray: effects of carrier gas flow and particle injection on plasma jet and entrained particle behaviour. International Journal of Heat and Mass Transfer 47 (24) (2004) 5189+5200.
  • [29] Williamson R. L., Fincke J. R., Chang C. H.: A computational examination of the sources of statistical Variance in particle parameters during thermal plasma spraying. Plasma Chemistry and Plasma Processing 20 (3) (2000) 299+324.
  • [30] Hansen G. A., Chang C. H.: Efficient Visualization of a plasma spray simulation. Computers in Physics 12 (1) (1998) 65+72.
  • [31] Zhang W., Wei G. H., Zhang H., Zheng L. L., Welch D. O., Sampath S.: Toward the achievement of substrate melting and controlled solidification in thermal spraying. Plasma Chemistry and Plasma Processing 27 (6) (2007) 717+736.
  • [32] "Idaho National Laboratory" Web. 5 May 2012. <https://inlportal.inl.goV/ portal/server.pt/community/science_engineering/332/materials_charac- terization_ther1nal_processing_capabilities/2986>.
  • [33] Zhang T., Gawne D. T., Liu B.: Computer modelling of the influence of process parameters on the heating and acceleration of particles during plasma spraying. Surface and Coatings Technology 132 (2-3) (2000) 233+243.
  • [34] Gawne D. T., Zhang T., Liu B.: Computational analysis of the influence of a substrate, solid shield and gas shroud on the flow field of a plasma jet. Surface and Coatings Technology 153 (2-3) (2002) 138+147.
  • [35] Gawne D. T., Liu B., Bao Y., Zhang T.: Modelling of plasma-particle two- phase flow using statistical techniques. Surface and Coatings Technology 191 (2-3) (2005) 242+254.
  • [36] "CFD and CAE Software and Support - CD-adapco" Web. 5 May 2012. <http://wwvv.cd-adapco.com/products/star_cd/>.
  • [37] Murphy A. B., Kovitya P.: Mathematical model and laser scattering temperature measurements of a direct current plasma torch discharging into air. Journal of Applied Physics 73 (10) (1993) 4759+4769.
  • [38] Mariaux G., Vardelle A.: 3-D time-dependent modelling of the plasma spray process. Part 1: flow modeling. International Journal of Thermal Sciences 44 (4) (2005) 357+366.
  • [39] Delluc G., Ageorges H., Pateyron B., Fauchais P.: Fast modelling of plasma jet and particle behaviours in spray conditions. High Temperature Material and Processes 9 (2) (2005) 211+226.
  • [40] Delluc G., Mariaux G., Vardelle A., Fauchais P., Pateyron B.: A numerical tool for plasma spraying. Part I: Modelling of plasma jet and particle behaviour. 16th International Symposium on Plasma Chemistry (ISPC 1 6), Taormina 2003.
  • [41] Fauchais P., Vardelle A., Dussoubs B.: Quo Vadis thermal spraying? Journal of Thermal Spray Technology 10 (1) (2001) 44+66.
  • [42] Zhang M. Y., Zhang H., Zheng L. L.: Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method. International Journal of Heat and Mass Transfer 51 (13-14) (2008) 3410+3419.
  • [43] Zhang M., Zhang H., Zheng L.: Numerical investigation of substrate melting and deformation during thermal spray coating by SPH method. Plasma Chemistry and Plasma Processing 29 (1) (2009) 55+68.
  • [44] Zhang H., Hu S., Wang G., Zhu J.: Modeling and simulation of plasma jet by lattice Boltzmann method. Applied Mathematical Modelling 31 (6) (2007) 1124+1132.
  • [45] Pfender E., Chang C. H.: Plasma spray jets and plasma-particulate interaction: Modeling and experiments. Proceeding of the 15th International Thermal Spray Conference, Nice (France) (1998) 315-320.
  • [46] Kanta A.-F., Montavon G., Bemdt C. C., Planche M.-P., Coddet C.: Intelligent system for prediction and control: Application in plasma spray process. Expert Systems with Applications 38 (1) (2011) 260+271.
  • [47] Guessasma S., Montavon G., Coddet C.: Modelling of the APS plasma spray process using artificial neural networks: basis, requirements and an example. Computational Materials Science 29 (3) (2004) 315+333.
  • [48] Kanta A.F., Planche M. P., Montavon G., Coddet C.: In-flight and upon impact particle characteristics modelling in plasma spray process. Surface and Coatings Technology 204 (9-10) (2010) 1542+1548.
  • [49] Heimann R. B.: Plasma-spray coating. Principles and applications. Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim (2008).
  • [50] "Design of Experiments (DOE): Software." Web. 16 Jan. 2012. <http:// www.statease.com/software.html>.
  • [51] Schneider K. E., Belashchenko V., Dratwinski M., Siegmann S., Zagorski A.: Thermal spraying for power generation components. Wiley-VCH Ver- lag GmbH & Co. KGaA, Weinheim (2006).
  • [52] Harder B. J., Zhu D.: Plasma spray-physical vapor deposition (PS-PVD) of ceramics for protective coatings. 35th International Conference and Exposition on Advanced Ceramics and Composites, Daytona Beach, FL, United States (2011) 23+28.
  • [53] Thirumalaikumarasamy D., Shanmugam K., Balasubramanian V.: Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology. Progress in Natural Science: Materials International 22 (5) (2012) 468+479.
  • [54] “Data Mining Software, Statistical Analysis, Predictive Analytics, Credit Scoring”. Web. 16 Jan. 2012. <http://www.statsoft.com>.
  • [55] “MathWorl<s Official Website”. Web. 16 Jan. 2012. <wvvvv.mathworks. com>.
  • [56] Zhang T., Bao Y., Gawne D. T., Liu B., Karwattzki J.: Computer model to simulate the random behaviour of particles in a thermal-spray jet. Surface and Coatings Technology 201 (6) (2006) 3552+3563.
  • [57] Ghafouri-Azar R., Mostaghimi J., Chandra S., Charmchi M.: A stochastic model to simulate the formation of a thermal spray coating. Journal of Thermal Spray Technology 12 (1) (2003) 53+69.
  • [58] SIMULENT-HOME. Web. 17 Jan. 2012. <http://vvvvw.simulent.com>.
  • [59] Parizi H., Rosenzweig L., Mostaghimi J., Chandra S., Coyle T., Salimi H., Pershin L., Mcdonald A., Moreau C.: Numerical simulation of droplet impact on patterned surfaces. Journal of Thermal Spray Technology 16 (2007) 713+721.
  • [60] "TECNAR - Home" Web. 5 May 2012. <http://vvww.tecnar.com/>.
  • [61] Parizi H. B., Mostaghimi J., Pershin L., Jazi H. S.: Analysis of the microstructure of thermal spray coatings: A modeling approach. Journal of Thermal Spray Technology 19 (4) (2010) 736+744.
  • [62] Delluc G., Perrin L., Ageorges H., Fauchais P., Pateyron B.: A numerical tool for plasma spraying. Part II: Model of statistic distribution of alumina multi particle powder. 16th International Symposium on Plasma Chemistry (ISPC16), Bari (2003).
  • [63] Ettouil F. B., Pateyron B., Ageorges H., Ganaoui M. El, Fauchais P., Mazhorova O.: Fast modeling ofphase changes in a particle injected with- in a d.c plasma jet. Journal of Thermal Spray Technology 16 (5) (2007) 744+750.
  • [64] Rojas J. R., Cruchaga M. A., Celentano D. J., Ganaoui M. El, Pateyron B.: Numerical simulation of the melting of particles injected in a plasma jet. Ingeniare. Revista chilena de ingeniería 17 (3) (2009) 299+308.
  • [65] Jets&Poudres. Web. 16 Jan. 2012. <http://jets.poudres.free.fr/index.html>.
  • [66] Berce A.: Simulation of thermal spraying in IPS virtual paint. Master's Thesis, Chalmers University Of Technology, Göteborg, Sweden (2011).
  • [67] "IPS Virtual Paint- Industrial Path Solutions" Web. 5 May 2012. <http:// www.industrialpathsolutions.com/future-modules/ips-virtual-paint>.
  • [68] "IBOFlow - efficient CFD Solver for Multiphase Flows _ Fraunhofer- Chalmers Centre" Web. 5 May 2012. <http://www.fcc.chalmers.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c3149f54-4a7c-4b0d-9285-e7689be6ef6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.