Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 25, No. 2 | 137--147
Tytuł artykułu

Colloidal quantum dots conjugated with human serum albumin : interactions and bioimaging properties

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantum dots, due to their unique optical properties, constitute significant materials for many areas of nanotechnology and bionanotechnology. This work presents a review of researches dedicated to the interaction between quantum dots (QDs) with human serum albumin (HSA) and human cell culture as important for nanomedicine applications. The optical properties of bio-nanocomplexes formed by nanoparticles including colloidal QDs (e.g., CdTe, CdS, CdCoS) and albumin are displayed. The absorption spectra show that adding HSA to colloidal QDs leads to a gradual decrease of absorption and broadening of the exciton structure. The photoluminescence quenching results indicate that the quenching effect of QDs on HSA fluorescence depends on the size and temperature. The nature of quenching is rather static, resulting in forming QD-HSA complexes. The CdTe QD-HSA complexes show chemical stability in a PBS buffer. Furthermore, it is stable in cytoplasm and suitable for cell labeling, tracking, and other bioimaging applications.
Wydawca

Rocznik
Strony
137--147
Opis fizyczny
Bibliogr. 84 poz., il., tab., wykr.
Twórcy
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland, rwojnar@ur.edu.pl
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
  • Department of Physics of Semiconductors and Nanostructures, Chernivtsi National University, 2 Kotsiubynsky St., 58012 Chernivtsi, Ukraine
  • Department of Theoretical and Applied Physics and Computer Simulations, Ivan Franko Drohobych Pedagogical University, 24 I. Franko St., 82100 Drohobych, Ukraine
autor
  • Department of Animal Physiology and Reproduction, Institute of Biotechnology, University of Rzeszow, ul. Werynia 502, 36-100 Kolbuszowa, Poland
  • Department of Animal Physiology and Reproduction, Institute of Biotechnology, University of Rzeszow, ul. Werynia 502, 36-100 Kolbuszowa, Poland
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
Bibliografia
  • [1] S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, C. de Mello Donega, Highly luminescent water-soluble CdTe quantum dots, Nano Lett. 3 (4) (2003)503–507.
  • [2] R. Kaur, A. K. Paul, A. Deep, Conjugation of chlorinated carbon nanotubes with quantum dots for electronic applications, Mater. Lett. 117 (2014) 165–167.
  • [3] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A. M. Seifalian, Biological applications of quantum dots, Biomaterials 28 (2007) 4717–4732.
  • [4] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307 (5709) (2005) 538–544.
  • [5] M. Wiśniewski, P. Rossochacka, K. Werengowska-Ciećwierz, Medical aspects of nanostructural carbonaceous materials, Inż. Ochr. Środow. 16 (2) (2013) 255–261.
  • [6] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater. 4 (6) (2005) 435–446.
  • [7] T. M. Samir, M. M. H. Mansour, S. C. Kazmierczak, H. M. E. Azzazy, Quantum dots: heralding a brighter future for clinical diagnostics, Nanomedicine 7 (11) (2012) 1755–1769.
  • [8] D. Chen, J. Liu, X.-F. Yu, M. He, X.-F. Pei, Z.-Y. Tang, Q.-Q. Wang, D.-W. Pang, Y. Li, The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis, Biomaterials 29 (2008) 4170–4176.
  • [9] W. C. Chan, D. J. Maxwell, X. Gao, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol. 13 (1) (2002) 40–46.
  • [10] K. D. Wegner, N. Hildebrandt, Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors, Chem. Soc. Rev. 44 (2015) 4792–4834.
  • [11] M. Li, F. Li, Z. He, J. Zhang, J. Han, P. Lu, Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B, J. Appl. Phys. 116 (2014) 233106-1–233106-6.
  • [12] M. Yao, X. Zhang, L. Ma, W. Chen, A.G. Joly, J. Huang, Q. Wang, Luminescence enhancement of CdTe nanostructures in LaF3:Ce/CdTe nanocomposites, J. Appl. Phys. 108 (2010) 103104-1–103104-7.
  • [13] M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. L. Rogach, H. Weller, Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films, J. Appl. Phys. 87 (2000) 2297–2302.
  • [14] M. Fang, C.-W. Peng, D.-W. Pang, Y. Li, Quantum dots for cancer research: current status, remaining issues, and future perspectives, Cancer Biol. Med. 9 (2012) 151–163.
  • [15] Handbook of Nanophysics: Nanomedicine and Nanorobotics, in: J. Sattler, D. Klaus (Eds.), CRC Press, 2011, ISBN 978-1-4200-7546-5.
  • [16] H. Meng, J. Y. Chen, L. Mi, P.N. Wang, M. Y. Ge, Y. Yue, N. Dai, Conjugates of folic acids with BSA-coated quantum dots for cancer cell targeting and imaging by single-photon and two-photon excitation, J. Biol. Inorg. Chem. 16 (1) (2011)117–123.
  • [17] S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, I. D. Tomlinson, Biocompatible quantum dots for biological applications, Chem. Biol. 18 (2011)10–24.
  • [18] J. Gburek, K. Gołąb, K. Juszczyńska, Renal catabolism of albumin – current views and controversies, Postępy Hig. Med. Dośw. 65 (2011) 668–677.
  • [19] A. Miller, W. W. Jędrzejczak, Albumina – funkcje biologiczne i znaczenie kliniczne, Postępy Hig. Med. Dośw. 55 (2001) 17–36.
  • [20] C. H. Park, T. Maack, Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit, J. Clin. Invest. 73 (1984) 767–777.
  • [21] G. J. Quinlan, G. S. Martin, T. W. Evans, Albumin: biochemical properties and therapeutic potential, Hepatology 41 (6) (2005) 1211–1219.
  • [22] D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, B. Broom, T. Y. Miller, Three-dimensional structure of human serum albumin, Science 244 (1989) 1195–1198.
  • [23] L. Trynda-Lemiesz, K. Wiglusz, I. Mucha, The role of albumin in diagnostics. Binding of ions and metal complexes, Wiad. Chem. 64 (2010) 84–101.
  • [24] C. M. Wu, L. Y. Lin, Utilization of albumin-based sensor chips for the detection of metal content and characterization of metal–protein interaction by surface plasmon resonance, Sens. Actuators B: Chem. 110 (2005) 231–238.
  • [25] B. Nithyaja, K. Vishnu, S. Mathew, P. Radhakrishnan, V. P. N. Nampoori, Studies on CdS nanoparticles prepared in DNA and bovine serum albumin based biotemplates, J. Appl. Phys. 112 (2012) 064704-1–064704-6.
  • [26] L. W. Shao, C. Q. Dong, F. M. Sang, H. F. Qian, J. C. Ren, Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy, J. Fluoresc. 19 (2009) 151–157.
  • [27] Q. Xiao, S. Huang, W. Su, P. Li, J. Ma, F. Luo, Y. Liu, Systematically investigations of conformation and thermodynamics of HSA adsorbed to different sizes of CdTe quantum dots, Colloids Surf. B: Biointerfaces 102 (2013) 76–81.
  • [28] D. Wu, Z. Chen, X. Liu, Study of the interaction between bovine serum albumin and ZnS quantum dots with spectroscopic techniques, Spectrochim. Acta A Mol. Biomol. Spectrosc. 84 (2011) 178–183.
  • [29] J. Hemmateenejad, S. Yousefinejad, Interaction study of human serum albumin and ZnS nanoparticles using fluorescence spectrometry, J. Mol. Struct. 1037 (2013) 317–322.
  • [30] E. A. Bhogale, N. Patel, J. Mariam, P. M. Dongre, A. Miotello, D. C. Kothari, Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy, Colloids Surf. B: Biointerfaces 102 (2013) 257–264.
  • [31] M. Ghali, Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots, J. Lumin. 130 (2010) 1254–1257.
  • [32] C. B. Murray, C. R. Kagan, M. G. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 270 (1995) 1335–1338.
  • [33] A. I. Savchuk, I. D. Stolyarchuk, P. M. Grygoryshyn, O. P. Antonyuk, T. A. Savchuk, Interaction of human serum albumin with CdTe quantum dots probed by optical spectroscopy methods, Proc. SPIE 9066 (2013) 906618.
  • [34] V. I. Fediv, A. I. Savchuk, V. M. Frasunyak, V. V. Makoviy, O. A. Savchuk, Magnetic and magneto-optical properties of CdS:Mn quantum dots in PVA matrix, J. Phys.: Conf. Ser. 245 (2010), 012084 1–4.
  • [35] L. Sharma, M. Inpasalini, S. Mukherjee, Defect induced ferromagnetism in luminescent and doped CdS quantum dots, J. Mater. Sci. Mater. Electron. 26 (10) (2015) 7621–7628.
  • [36] I. Rashid, K. Imad, A. H. A. Rahnamaye, A. Zahid, A. Iftikhar, Density functional studies of magneto-optic properties of CdCoS, J. Magn. Magn. Mater. 351 (2014) 60–64.
  • [37] H. Zhang, L. Wang, H. Xiong, L. Hu, B. Yang, W. Li, Hydrothermal synthesis for high-quality CdTe nanocrystals, Adv. Mater. 15 (20) (2003) 1712–1715.
  • [38] C. Wang, Q. Ma, W. Dou, S. Kanwal, G. Wang, P. Yuan, X. Su, Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes, Talanta 77 (4) (2009) 1358–1364.
  • [39] Y. J. Hu, Y. Liu, L. X. Zhang, R. M. Zhao, S. S. Qu, Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method, J. Mol. Struct. 750 (2005) 174–178.
  • [40] L. Zhao, X. Zhao, B. Yang, C. Gao, X. Hao, Y. Wu, New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin, Sci. Total Environ. 407 (2009) 5019–5023.
  • [41] J. Liang, Y. Cheng, H. Han, Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques, J. Mol. Struct. 892 (2008) 116–120.
  • [42] M. A. Walling, J. A. Novakl, J. R. E. Shepard, Quantum dots for live cell and in vivo imaging, Int. J. Mol. Sci. 10 (2009) 441–491.
  • [43] G. R. Bardajee, Z. Hooshyar, Interaction of a novel starch-capped CdS quantum dots with human serum albumin and bovine serum albumin, Starch 68 (2016)329–338.
  • [44] Q.-F. Chen, W.-X. Wang, Y.-X. Ge, M.-Y. Li, S.-K. Xu, X.-J. Zhang, Direct aqueous synthesis of cysteamine-stabilized CdTe Quantum dots and its deoxyribonucleic acid bioconjugates, Chin. J. Anal. Chem. 35 (1) (2007) 135–138.
  • [45] L. Lai, C. Lin, Z.-Q. Xu, X.-L. Han, F.-F. Tian, P. Mei, Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin, Spectrochim. Acta Mol. Biomol. Spectrosc. 97 (2012) 366–376.
  • [46] Y. Masumoto, T. Takagahara, Semiconductor Quantum Dots Physics, Spectroscopy and Applications, Springer Science & Business Media, 2002, pp. 96–107.
  • [47] H. Zhang, D. Yee, C. Wang, Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives, Nanomedicine 3 (1) (2008) 83–91.
  • [48] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B 101 (1997) 9463–9475.
  • [49] A. Sulkowska, Interaction of drugs with bovine and human serum albumin, J. Mol. Struct. 614 (2002) 227–232.
  • [50] P. N. Naik, S. T. Nandibewoor, S. A. Chimatadar, Non-covalent binding analysis of sulfamethoxazole to human serum albumin: fluorescence spectroscopy, UV–vis, FT-IR, voltammetric and molecular modeling, J. Pharm. Anal. 5 (3) (2015) 143–152.
  • [51] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science Business Media, 2006, pp. 278–280.
  • [52] E. R. Carraway, J. N. Demas, B. A. DeGraff, Luminescence quenching mechanism for microheterogeneous systems, Anal. Chem. 63 (4) (1991) 332–336.
  • [53] H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, Fluorescence imaging of surface plasmon fields, Appl. Phys. Lett. 80 (2002) 404–406.
  • [54] C. Röcker, M. Pötzl, F. Zhang, W. J. Parak, G. U. Nienhaus, A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles, Nat. Nanotechnol. 4 (2009) 577–580.
  • [55] Q. Wang, F. Ye, P. Liu, X. Min, X. Li, Conjugation and fluorescence quenching between bovine serum albumin and l-cysteine capped CdSe/CdS quantum dots, Protein Pept. Lett. 18 (4) (2011) 410–414.
  • [56] K. S. Adarsh, M. K. Singh, M. G. Kotresh, L. S. Inamdar, M. A. Shivkumar, B. N. Jagatap, B. G. Mulimani, S. R. Inamdar, Spectroscopic investigation of water-soluble alloyed QDs with bovine serum albumin, Luminescence 32 (1) (2017) 35–42.
  • [57] H. Cao, D. H. Wu, H. X. Wang, M. Xu, Effect of the glycosylation of flavonoids on interaction with protein, Spectrochim. Acta Mol. Biomol. Spectrosc. 73 (5) (2009) 972–975.
  • [58] M. G. Bawendi, M. I. Steigerwald, L. E. Brus, The quantum mechanics of larger semiconductor clusters (“quantum dots”), Annu. Rev. Phys. Chem. 41 (1990) 477–496.
  • [59] J. N. Tian, J. Q. Liu, W. Y. He, Z. D. Hu, X. J. Yao, X. G. Chen, Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modeling method, Biomacromolecules 5 (5) (2004) 1956–1961.
  • [60] Q. Wang, P. Liu, X. Zhou, X. Zhang, T. Fang, P. Liu, X. Min, X. Li, Thermodynamic and conformational investigation of the influence of CdTe QDs size on the toxic interaction with BSA, J. Photochem. Photobiol. 230 (2012) 23–30.
  • [61] C. M. Orphanou, The detection and discrimination of human body fluids using ATR FT-IR spectroscopy, Forensic Sci. Int. 252 (2015) 10–16.
  • [62] A. Barth, Infrared spectroscopy of proteins, Biochim. Biophys. Acta 1767 (9) (2007) 1073–1101.
  • [63] K. Rahmelow, W. Hübner, Secondary structure determination of proteins in aqueous solution by infrared spectroscopy: a comparison of multivariate data analysis, Methods Anal. Biochem. 241 (1996) 5–13.
  • [64] S. Tabassum, W. M. Al-Asbahy, M. Afzal, F. Arjmand, Synthesis, characterization and interaction studies of copper based drug with Human Serum Albumin (HSA): spectroscopic and molecular docking investigations, J. Photochem. Photobiol. B: Biol. 114 (2012) 132–139.
  • [65] A. I. Ivanov, R. G. Zhbankov, E. A. Korolenko, E. V. Korolik, L. A. Meleshchenko, M. Marchewka, H. Ratajczak, Infrared and Raman spectroscopic studies of the structure of human serum albumin under various ligands loads, J. Appl. Spectrosc. 60 (1994) 305–309.
  • [66] J. Kong, S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin. 39 (8) (2007) 549–559.
  • [67] S. Saha, T. Kamilya, R. Bhattacharya, A. K. Bhunia, Unfolding of blood plasma albumin protein in interaction with CdS nanoparticles, Sci. Adv. Mater. 6 (2014) 1–7.
  • [68] E. B. Voura, J. K. Jaiswal, H. Mattoussi, S. M. Simon, Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy, Nat. Med. 10 (9) (2004) 993–998.
  • [69] M. J. Kim, J. Y. Lee, U. Nehrbass, Detection of melanoma using antibody-conjugated quantum dots in a coculture model for high-throughput screening system, Analyst 137 (6) (2012) 1440–1445.
  • [70] L.-W. Liu, S.-Y. Hu, Y. Pan, J.-Q. Zhang, Y.-S. Feng, X.-H. Zhang, Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications, Beilstein J. Nanotechnol. 5 (2014) 919–926.
  • [71] S. Zheng, J.-Y. Chen, J.-Y. Wang, L.-W. Zhou, Q. Peng, Effects of cell cycle on the uptake of water soluble quantum dots by cells, J. Appl. Phys. 110 (2011) 124701-1–124701-6.
  • [72] H. Mansur, A. Mansur, J. Gonzales, Protein-semiconductor quantum dot hybrids for biomedical applications, Phys. Status Solidi 96 (2012) 1435–1438.
  • [73] V. Poderys, M. Matulionyte, A. Selskis, R. Rotomskis, Interaction of water-soluble CdTe quantum dots with bovine serum albumin, Nanoscale Res. Lett. 6 (9) (2011) 1–6.
  • [74] J. Mytych, K. Pacyk, M. Pepek, J. Zebrowski, A. Lewinska, M. Wnuk, Nanoparticle-mediated decrease of lamin B1 pools promotes a TRF protein-based adaptive response in cultured cells, Biomaterials 53 (2015) 107–116.
  • [75] Q. Jiao, L. Li, Q. Mu, Q. Zhang, Immunomodulation of nanoparticles in nanomedicine applications, BioMed Res. Int. 2014 (2014) 1–19.
  • [76] O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, Y. Omidi, Impacts of quantum dots in molecular detection and bioimaging of cancer, Bioimpacts 4 (3) (2014) 149–166.
  • [77] M. R. Rodriguez-Torres, C. Velez, B. Zayas, O. Rivera, Z. Arslan, M. N. Gonzalez-Vega, D. Diaz-Diestra, J. Beltran-Huarac, G. Morell, O. M. Primera-Pedrozo, Cyto-compatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells, J. Nanopart. Res. 17 (266) (2015) 1–11.
  • [78] M. Vibin, R. Vinayakan, A. John, V. Raji, N. S. Rejiya, A. Abraham, Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications, J. Nanopart. Res. 13 (6) (2011) 2587–2596.
  • [79] B. J. Jankiewicz, D. Jamiola, J. Choma, M. Jaroniec, Silica–metal core–shell nanostructures, Adv. Colloid Interface Sci. 170 (2012) 28–47.
  • [80] H. H. Luu, Q. Kang, J. K. Park, W. Si, Q. Luo, W. Jiang, H. Yin, A.G. Montag, M. A. Simon, T. D. Peabody, R. C. Haydon, C. W. Rinker-Schaeffer, T.-C. He, An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis, Clin. Exp. Metastasis 22 (2005) 319–329.
  • [81] J. Liu, R. Hu, J. Liu, B. Zhang, Y. Wang, X. Liu, W.C. Law, L. Liu, L. Ye, K. T. Yong, Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models, Mater. Sci. Eng. C Mater. Biol. Appl. 57 (2015) 222–231.
  • [82] M. Johari-Ahar, J. Barar, A.M. Alizadeh, S. Davaran, Y. Omidi, M. R. Rashidi, Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells, J. Drug Target. 15 (2015) 1–14.
  • [83] A. A. Mansur, S. M. de Carvalho, H. S. Mansur, Bioengineered quantum dot/chitosan-tripeptide nanoconjugates for targeting the receptors of cancer cells, Int. J. Biol. Macromol. 82 (2016) 780–789.
  • [84] K. W. Kuo, T. H. Chen, W. T. Kuo, H. Y. Huang, H. Y. Lo, Y. Y. Huang, Cell uptake and intracellular visualization using quantum dots or nuclear localization signal-modified quantum dots with gold nanoparticles as quenchers, J. Nanosci. Nanotechnol. 10 (7) (2010) 4173–4177.
Uwagi
EN
This article is an expanded version of the scientific reports presented at theInternational Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c2e97728-c7f3-4c59-bee4-518a7b035c81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.