Warianty tytułu
Języki publikacji
Abstrakty
Subjecting lignocellulosic substrates to anaerobic digestion is a promising way of renewable energy obtaining. This method of generating energy is consistent with the sustainable development. In order to destroy the biodegradation-resistant structure of lignocellulosic materials before directing them to anaerobic decomposition, the use of pretreatment methods is required. The purpose of the present study was to assess the effect of temperature rise and a solvent type on the chemical pretreatment of fruit and vegetable pomace results. Biomass samples were placed in distilled water, 0.05 M NaOH and 0.05 M H2SO4 solutions and left for 20 h at 22°C and at 50°C (at room temperature and in a thermostated chamber). Concentrations of dissolved chemical oxygen demand (CODdissolved), volatile fatty acids (VFA) and phenols, as well as electrolytic conductivity (EC) values, in the obtained hydrolysates were analyzed. The most significant result of temperature rise on the increase of solubility of organic compounds contained in fruit and vegetable pomace, expressed by VFA, one of the pretreatment methods efficiency indicators, was noted in the samples soaked in alkaline solution. The highest VFA level was observed in the series of the experiment conducted at 50°C (868 mg·L-1). The process carried out under these conditions resulted also in the highest concentration of another important pretreatment indicator, CODdissolved. Hydrolysis conducted at 50 °C in a sodium hydroxide solution seems to be the most effective option for the pretreatment of fruit and vegetable pomace intended for energy production on biological way.
Czasopismo
Rocznik
Tom
Strony
242--251
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, m.pawlowska@pollub.pl
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, m.zdeb@pollub.pl
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
- 1. Agrawal A., Chaudhari P.K., Ghosh P., 2023. Anaerobic digestion of fruit and vegetable waste: A critical review of associated challenges. Environmental Science and Pollution Research, 30, 24987–25012. https://doi.org/10.1007/s11356-022-21643-7
- 2. Ares-Peón I.A., Garrote G., Domínguez H., Parajó J.C. 2016. Phenolics production from alkaline hydrolysis of autohydrolysis liquors. CyTA-J. Food, 14, 255–265. https://doi.org/10.1080/194 76337.2015.1094516
- 3. Barlianti V., Dahnum D., Hendarsyah H., Abimanyu H. 2015. Effect of alkaline pretreatment on properties of lignocellulosic oil palm waste. Procedia Chemistry, 16, 195–201. https://doi.org/10.1016/j.proche.2015.12.036
- 4. Blue D., Fortela D.L., Holmes W., LaCour D., LeBoeuf S., Stelly C., Subramaniam R., Hernandez R., Zappi M.E., Revellame E.D. 2019. Valorization of industrial vegetable waste using dilute HCl pretreatment. Processes, 7, 853. https://doi:10.3390/pr7110853
- 5. Boukroufa M., Boutekedjiret C., Petigny L., Rakotomanomana N., Chemat F. 2015. Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24, 72–79. https://doi.org/10.1016/j.ultsonch.2014.11.015
- 6. Cabrera E., Muñoz M.J., Martín R., Caro I., Curbelo C., Díaz A.B. 2014. Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresource Technology, 167, 1–7. https://doi.org/10.1016/j.biortech.2014.05.103
- 7. Chatterjee B. and Mazumder D. 2020. New approach of characterizing fruit and vegetable waste (FVW) to ascertain its biological stabilization via two-stage anaerobic digestion (AD). Biomass and Bioenergy, 139, 105594. https://doi.org/10.1016/j.biombioe.2020.105594
- 8. Chaurasia A.K., Siwach P., Shankar R., Mondal P. 2023. Effect of pre-treatment on mesophilic anaerobic co-digestion of fruit, food and vegetable waste. Clean Technologies and Environmental Policy, 25, 603–616. https://doi.org/10.1007/s10098-021-02218-5
- 9. Chen Y., Stevens M.A., Zhu Y., Holmes J., Xu H. 2013. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels and Bioproducts, 6, 8. https://doi.org/10.1186/1754-6834-6-8
- 10. Cong W.-F., Moset V., Feng L., Møller H.B, Eriksen J. 2018. Anaerobic co-digestion of grass and forbsInfluence of cattle manure or grass based inoculum. Biomass and Bioenergy, 119, 90–96. https://doi.org/10.1016/j.biombioe.2018.09.009
- 11. Das S.K., Majhi S., Mohanty P., Pant K.K. 2014. CO-hydrogenation of syngas to fuel using silica supported Fe–Cu–K catalysts: Effects of active components. Fuel Processing Technology, 118, 8289. https://doi.org/10.1016/j.fuproc.2013.08.014
- 12. Decker S.R., Sheehan J., Dayton D.C., Bozell J.J., Adney W.S., Hames B., Thomas S.R., Bain R.L., Czernik S., Zhang M., Himmel M.E. 2012. Biomass conversion. In Handbook of Industrial Chemistry and Biotechnology, Springer: Boston, MA, USA, 1249–1322.
- 13. Demirbas A. 2005. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31, 171–192. https://doi.org/10.1016/j.pecs.2005.02.002
- 14. Ding L., Cheng J., Qiao D., Yue L., Li Y.-Y., Zhou J., Cen K. 2017. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresource Technology, 241, 491–499. https://doi.org/10.1016/j.biortech.2017.05.114
- 15. Edwiges T., Frare L., Mayer B., Lins L., Triolo J.M., Flotats X., de Mendonça Costa M.S.S. 2018. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, 71, 618–625. https://doi.org/10.1016/j.wasman.2017.05.030
- 16. FAO, Food and Agriculture Organization of the United Nations. 2014. Food wastage footprint: fool cost-accounting.
- 17. Frigon J.C. and Guiot S.R. 2010. Biomethane production from starch and lignocellulosic crops: A comparative review. Biofuels, Bioproducts & Bioref ining, 4, 447–458. https://doi.org/10.1002/bbb.229
- 18. González G., Urrutia H., Roeckel M., Aspe E. 2005. Protein hydrolysis under anaerobic, saline conditions in presence of acetic acid. Journal of Chemical Technology and Biotechnology, 157, 151–157. https://doi:10.1002/jctb.1165
- 19. Günerhan Ü., Us E., Dumlu L., Yılmaz V., Carrère H., Perendeci A.N. 2020. Impacts of chemical-assisted thermal pretreatments on methane production from fruit and vegetable harvesting wastes: process optimization. Molecules, 25, 500. https://doi:10.3390/molecules25030500
- 20. Ji Ch., Kong Ch.-X., Mei Z.-L., Li J. 2017. A review of the anaerobic digestion of fruit and vegetable waste. Applied Biochemistry and Biotechnology, 183, 906–922. https://doi:10.1007/s12010-017-2472-x
- 21. Jiang Y., Heaven S., Banks C.J. 2012. Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy, 44, 206–214. https://doi.org/10.1016/j.renene.2012.01.012
- 22. Jin Z., Katsumata K.S., Lam T.B.T., Iiyama K. 2006. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers, 83, 103–110. https:// doi:10.1002/bip.20533
- 23. Kalogiannis A., Diamantis V., Eftaxias A., Stamatelatou K. 2024. Long-term anaerobic digestion of seasonal fruit and vegetable waste using a leachbed reactor coupled to an upflow anaerobic sludge bed reactor. Sustainability, 16(1), 50. https://doi.org/10.3390/su16010050
- 24. Karki B., Maurer D., Jung S. 2011. Efficiency of pretreatments for optimal enzymatic saccharification of soybean fiber. Bioresource Technology, 102, 65226528. https://doi:10.1016/j.biortech.2011.03.014
- 25. Kassim M.A., Meng T.K., Kamaludin R., Hussain A.H., Nurul Adela Bukhari N.A. Chapter 9—Bioprocessing of sustainable renewable biomass for bioethanol production. In Value-Chain of Biofuels, Yusup, S., Rashidi, N.A., Eds., Elsevier: Amsterdam, The Netherlands, 2022, 195–234
- 26. Kayembe K., Basosila L., Mpiana P.T., Sikulisimwa P.C., Mbuyu K. 2013. Inhibitory effects of phenolic monomers on methanogenesis in anaerobic digestion. British Microbiology Research Journal, 3, 32–41. https://doi:10.9734/BMRJ/2013/2291
- 27. Kim I. and Han J. 2012. Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass and Bioenergy, 46, 210–217. https://doi.org/10.1016/j.biombioe.2012.08.024
- 28. Kumar P., Barrett D.M., Delwiche M.J., Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729. https://doi.org/10.1021/ie801542g
- 29. Lee S.H. and Rasaiah J.C. 2011. Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water. Journal of Chemical Physics, 135, 124505. https://doi.org/10.1063/1.3632990
- 30. Li C., Knierim B., Manisseri C., Arora R., Scheller H.V., Auer M., Vogel K.P., Simmons B.A., Singh S. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignifcation and enzymatic saccharifcation. Bioresource Technology, 101, 4900–4906. https://doi:10.1016/j.biortech.2009.10.066
- 31. Li Y., Jin Y., Li J., Li H., Yu Z. 2016. Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Applied Energy, 172, 47–58. https://doi.org/10.1016/j.apenergy.2016.03.080
- 32. Li W., Bhat S.A., Li J., Cui G., Wei Y., Yamada T., Li F. 2020. Effect of excess activated sludge on vermicomposting of fruit and vegetable waste by using novel vermireactor. Bioresource Technology, 302, 122816. https://doi.org/10.1016/j.biortech.2020.122816
- 33. Li Y., Wang L.-E., Liu G., Cheng S. 2021. Rural household food waste characteristics and driving factors in China. Resources, Conservation and Recycling, 164, 105209. https://doi.org/10.1016/j.resconrec.2020.105209
- 34. Liew L.N., Shi J., Li Y. 2011. Enhancing the solidstate anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, 102(19), 8828–8834. https://doi: 10.1016/j.biortech.2011.07.005
- 35. Malherbe S. and Cloete T.E. 2002. Lignocellulose biodegradation: fundamentals and applications. Re/Views in Environmental Science & Bio/Technology, 1, 105–114. https://doi.org/10.1023/A:1020858910646
- 36. Marks-Bielska R., Bielski S., Novikova A., Romaneckas K. 2019. Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability, 11, 4714. https://doi.org/10.3390/su11174714
- 37. McCarthy B., Kapetanaki A.B., Wang P. 2020. Completing the food waste management loop: Is there market potential for value-added surplus products (VASP)? Journal of Cleaner Production, 256, 120435. https://doi.org/10.1016/j.jclepro.2020.120435
- 38. Menon V. and Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38, 522–550. https://doi.org/10.1016/j.pecs.2012.02.002
- 39. Mirmohamadsadeghi S., Karimi K., Azarbaijani R., Parsa Yeganeh L., Angelidaki I., Nizami A.S., Bhat R., Dashora K., Vijay V.K., Aghbashlo M. et al. 2021. Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity. Renewable and Sustainable Energy Reviews, 135, 110173. https://doi.org/10.1016/j.rser.2020.110173
- 40. Mozhiarasi V. 2022. Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. Chemosphere, 288(12), 132604. https://doi.org/10.1016/j.chemosphere.2021.132604
- 41. Nenkova S., Vasileva T., Stanulov K. 2008. Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass. Chemistry of Natural Compounds, 44, 182–185. https://doi.org/10.1007/s10600-008-9009-z
- 42. Olatunji O.O., Adedeji P.A., Madushele N., Rasmeni Z.Z., van Rensburg N.J. 2023. Evolutionary optimization of biogas production from food, fruit, and vegetable (FFV) waste. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04506-0
- 43. Oliveira T.C.G., Caleja C., Oliveira M., Pereira E., Barros L. 2023. Reuse of fruits and vegetables biowaste for sustainable development of natural ingredients. Food Bioscience, 53(5),102711. https://doi.org/10.1016/j.fbio.2023.102711
- 44. Ozkan L., Erguder T.H., Demirer G.N. 2011. Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. International Journal of Hydrogen Energy, 36, 382–389. https://doi.org/10.1016/j.ijhydene.2010.10.006
- 45. Pagliaccia P., Gallipoli A., Gianico A., Gironi F., Montecchio D., Pastore C., di Bitonto L., Braguglia C.M. 2019. Variability of food waste chemical composition: Impact of thermal pre-treatment on lignocellulosic matrix and anaerobic biodegradability. Journal of Environmental Management, 236, 100107. https://doi.org/10.1016/j.jenvman.2019.01.084
- 46. Plazzotta S., Manzocco L., Nicoli M.C. 2017. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends in Food Science & Technology, 63, 51–59. https://doi.org/10.1016/j.tifs.2017.02.013
- 47. Saidur R., Abdelaziz E.A., Demirbas A., Hossain M.S., Mekhilef S. 2011. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15, 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015
- 48. Saxena R.C., Adhikari D.K., Goyal H.B. 2009. Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews, 13, 167–178. https://doi.org/10.1016/j.rser.2007.07.011
- 49. Scano E.A., Asquer C., Pistis A., Ortu L., Demontis V., Cocco D. 2014. Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Conversion and Management, 77, 22–30. https://doi.org/10.1016/j.enconman.2013.09.004
- 50. Schirmer W.N., dos Santos L.A., Martins K.G., Gueri M.V.D., Jucá J.F.T. 2023. The effect of alkaline pretreatment on the anaerobic digestion of fruit and vegetable wastes from a central food distribution market. Journal of Material Cycles and Waste Management, 25, 2887–2899. https://doi.org/10.1007/s10163-023-01722-8
- 51. Song Z., Yang G., Liu X., Yan Z., Yuan Y., Liao Y. 2014. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE, 9, e93801. https://doi.org/10.1371/journal.pone.0093801
- 52. Teghammar A., Yngvesson J., Lundin M., Taherzadeh M.J., Horvath I.S. 2010. Pretreatment of paper tube residues for improved biogas production. Bioresource Technology, 101, 1206–1212. https://doi.org/10.1016/j.biortech.2009.09.029
- 53. Us E. and Perendeci N.A. 2012. Improvement of methane production from greenhouse residues: optimization of thermal and H2 SO4 pretreatment process by experimental design. Chemical Engineering Journal, 181–182, 120–131. https://doi:10.1016/j.cej.2011.11.038
- 54. Wagner H. 2012. Influence of temperature on electrical conductivity of diluted aqueous solutions. Power Plant Chemistry, 14, 455–469.
- 55. Wang L., Shen F., Yuan H., Zou D., Liu Y., Zhu B., Li X. 2014. Anaerobic co digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies. Waste Management, 34, 2627–2633. https://doi.org/10.1016/j.wasman.2014.08.005
- 56. Wang Y.T., Suidan M.T., Pfeffer J.T., Najm I. 1988. Effects of some alkyl phenols on methanogenic degradation of phenol. Applied and Environmental Microbiology, 54, 1277–1279. https://doi.org/10.1128/aem.54.5.1277-1279.1988
- 57. Zheng Y., Lee C., Yu C., Cheng Y.-S., Zhang R., Jenkins B.M., VanderGheynst J.S. 2013. Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Applied Energy, 105, 1–7. https://doi.org/10.1016/j.apenergy.2012.11.070
- 58. Zheng Y., Zhao J., Xu F., Li Y. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53. https://doi.org/10.1016/j.pecs.2014.01.001
- 59. Zhou S., Zhang Y., Dong Y. 2012. Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy, 46, 644–648. https://doi:10.1016/j.energy.2012.07.017
- 60. Ziemiński K., Romanowska I., Kowalska-Wentel M., Cyran M. 2014. Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresource Technology, 166, 187–193. https://doi.org/10.1016/j.pecs.2014.01.001
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c245a0b6-80a6-4aa5-8655-a072be39caaa