Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 8 | 62--83
Tytuł artykułu

A Comparative Analysis of Analytical Hierarchy Process and Fuzzy Logic Modeling in Flood Susceptibility Mapping in the Assaka Watershed, Morocco

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Assaka watershed is one of the largest watersheds in the Guelmim region in southern Morocco. It is frequently exposed to the many flooding events that can be responsible for many costly human and material damages. This work illustrates a decision-making methodology based on Analytical Hierarchy Process (AHP) and Fuzzy Logic Modelling (FLM), in the order to perform a useful flood susceptibility mapping in the study area. Seven decisive factors were introduced, namely, flow accumulation, distance to the hydrographic network, elevation, slope, LULC, lithology, and rainfall. The susceptibility maps were obtained after normalization and weighting using the AHP, while after Fuzzification as well as the application of fuzzy operators (OR, SUM, PRODUCT, AND, GAMMA 0.9) for the fuzzy logic methods. Thereafter, the flood susceptibility zones were distributed into five flood intensity classes with very high, high, medium, low, and, very low susceptibility. Then validated by field observations, an inventory of flood-prone sites identified by the Draa Oued Noun Hydraulic Watershed Agency (DONHBA) with 71 carefully selected flood-prone sites and GeoEye-1 satellite images. The assessment of the mapping results using the ROC curve shows that the best results are derived from applying the fuzzy SUM (AUC = 0.901) and fuzzy OR (AUC = 0.896) operators. On the other hand, the AHP method (AUC = 0.893) shows considerable mapping results. Then, a comparison of the two methods of SUM fuzzy logic and AHP allowed considering the two techniques as complementary to each other. They can accurately model the flood susceptibility of the Assaka watershed. Specifically, this area is characterized by a high to very high risk of flooding, which was estimated at 67% and 30% of the total study area coverage using the fuzzy logic (SUM operator) and the AHP methods, respectively. Highly susceptible flood areas require immediate action in terms of planning, development, and land use management to avoid any dramatic disaster.
Wydawca

Rocznik
Strony
62--83
Opis fizyczny
Bibliogr. 89 poz., rys., tab.
Twórcy
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, Ibn Tofail University, 133, Kenitra, Morocco, achraf.khaddari@uit.ac.ma
  • Laboratory of Geomatic, Georesources and Environment, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, Ibn Tofail University, 133, Kenitra, Morocco
  • Geodynamics Laboratory of Old Chains, Department of Geology, Faculty of Sciences Ben M’Sik, Hassan II University, 7955 Casablanca, Morocco
  • Geodynamics Laboratory of Old Chains, Department of Geology, Faculty of Sciences Ben M’Sik, Hassan II University, 7955 Casablanca, Morocco
  • Laboratory of Geomatic, Georesources and Environment, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
  • Natural Resources and Sustainable Development Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra 133, Morocco
  • Laboratory of Geomatic, Georesources and Environment, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
  • Geosciences, Environment and Geomatics Laboratory, Department of Earth Sciences, Faculty of Sciences, Ibnou Zohr University, Agadir 80000, Morocco
  • MARE-Marine and Environmental Sciences Centre, Sedimentary Geology Group, Department of Earth Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra 3030-790, Portugal
Bibliografia
  • 1. Aide, T., Szönyi, M., Saidi, A.D. 2015. Morocco floods of 2014: what we can learn from Guelmim and Sidi Ifni. Zurich Insurance Group Ltd.: Zurichh, Switzerland.
  • 2. Akay, H. 2021. Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Computing, 25(14), 9325–9346.
  • 3. Amouch, S., Akhssas, A., Bahi, L., Bennouna, R. 2020. Characterisation of recent and future climatic trends in the region of Guelmim (Morocco). E3S Web of Conferences, 150, 03021.
  • 4. Andrade, T., Rodrigues, H., Bourguignon, M., Cordeiro, G. 2015. The exponentiated generalized Gumbel distribution. Revista Colombiana de Estadística, 38(1), 123–143.
  • 5. Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., Piccinni, A.F. 2016. Land use change impact on flooding areas: The case study of Cervaro Basin (Italy). Sustainability, 8(10), 996.
  • 6. Argaz, A., Ouahman, B., Darkaoui, A., Bikhtar, H., Ayouch, E., Lazaar, R. 2019. Flood hazard mapping using remote sensing and GIS Tools: a case study of souss watershed. Journal of Materials and Environmental Sciences, 10, 170–181.
  • 7. Atbir, H., Charif, A., Malek, H.A., Akdim, B., Louazani, M. 2021. Étude Géomorphologique des héritages quaternaires de la région de Lakhsass-Guelmim (versant sud de l’Anti-Atlas occidental, Maroc).
  • 8. Bannari, A., Kadhem, G., El-Battay, A., Hameid, N. 2018. Comparison of SRTM-V4. 1 and ASTER-V2. 1 for accurate topographic attributes and hydrologic indices extraction in flooded areas. Journal of Earth Science and Engineering, 8, 8–30.
  • 9. Barkey, R., Malamassam, D., Mukhlisa, A., Nursaputra, M. 2020. Land use planning for floods mitigation in Kelara Watershed, South Sulawesi Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 575, 012132.
  • 10. Bouamrane, A., Derdous, O., Dahri, N., Tachi, S.-E., Boutebba, K., Bouziane, M.T. 2022. A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semi-arid ungauged basin (Biskra basin: Algeria). International Journal of River Basin Management, 20(2), 203–213.
  • 11. Carter, J.V., Pan, J., Rai, S.N., Galandiuk, S. 2016. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery, 159(6), 1638–1645.
  • 12. Çavur, M., Duzgun, H., Kemeç, S., Demirkan, D. 2019. Land use and land cover classification of Sentinel 2-A: St Petersburg case study. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 13–16.
  • 13. Chen, F.-W., Liu, C.-W. 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222.
  • 14. Costache, R., Pham, Q.B., Sharifi, E., Linh, N.T.T., Abba, S.I., Vojtek, M., Vojteková, J., Nhi, P.T.T., & Khoi, D.N. 2019. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12(1), 106.
  • 15. D’Avignon, G.R., Sauvageau, M. 1996. L’aide multicritère à la décision: un cas d’intégration de critères techniques, économiques et environnementaux à Hydro-Québec. RAIRO-Operations Research, 30(3), 317–332.
  • 16. Dash, P., Sar, J. 2020. Identification and validation of potential flood hazard area using GIS‐based multi‐criteria analysis and satellite data‐derived water index. Journal of Flood Risk Management, 13(3), e12620.
  • 17. DeLong, E.R., DeLong, D.M., & Clarke-Pearson, D.L. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3), 837-845.
  • 18. Demir, V., Kisi, O. 2016. Flood hazard mapping by using geographic information system and hydraulic model: Mert River, Samsun, Turkey. Advances in Meteorology, 2016, 4891015.
  • 19. Echogdali, F., Boutaleb, S., Jauregui, J., & Elmouden, A. 2018. Cartography of flooding hazard in semi-arid climate: the case of Tata Valley (South-East of Morocco). Journal of Geography & Natural Disasters, 8(214), 2167–0587.1000214.
  • 20. Echogdali, F., Boutaleb, S., Kpan, R., Ouchchen, M., Id-Belqas, M., Dadi, B., Ikirri, M., Abioui, M. 2022. Flood hazard and susceptibility assessment in a semi-arid environment: A case study of Seyad basin, south of Morocco. Journal of African Earth Sciences, 196, 104709.
  • 21. El Mahmouhi, N., El Wartiti, M., Wissem, S.A., Kemmou, S., El Bahi, S. 2016. Utilisation des systèmes d’information géographiques et des modèles hydrologiques pour l’extraction des caractéristiques physiques du bassin versant d’Assaka (Guelmim, sud du Maroc)[The use of geographic information system for the extraction of physical characteristics of assaka watershed: sub-basins of sayed and oum laachar wadis (southern Morocco)]. International Journal of Innovation and Applied Studies, 16(2), 370–377.
  • 22. El Morjani, Z., Seif Ennasr, M., Elmouden, A., Idbraim, S., Bouaakaz, B., Saad, A. 2016. Flood hazard mapping and modeling using GIS applied to the Souss river watershed. In: Choukr-Allah R. et al. (Eds), The Souss-Massa river basin, Morocco (The handbook of environmental chemistry 53). Springer, Switzerland, pp. 57–93.
  • 23. El Morjani, Z.E.A. 2002. Conception d’un système d’information à référence spatiale pour la gestion environnementale: application à la sélection de sites potentiels de stockage de déchets ménagers et industriels en région semi-aride (Souss, Maroc). PhD Dissertation, University of Geneva].
  • 24. Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I.N., Pourghasemi, H. R. 2019. Artificial neural networks for flood susceptibility mapping in data-scarce urban areas. In Spatial modeling in GIS and R for Earth and Environmental Sciences. Elsevier, 323–336.
  • 25. Farhadi, H., Najafzadeh, M. 2021. Flood risk mapping by remote sensing data and random forest technique. Water, 13(21), 3115.
  • 26. Goovaerts, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of hydrology, 228(1–2), 113–129.
  • 27. Grillakis, M.G., Polykretis, C., Manoudakis, S., Seiradakis, K.D., Alexakis, D.D. 2020. A quantile mapping method to fill in discontinued daily precipitation time series. Water, 12(8), 2304.
  • 28. Gumbel, E. 1957. Méthodes graphiques pour l’analyse des débits de crues. Revue de statistique appliquée, 5(2), 77–89.
  • 29. Ha, H., Bui, Q.D., Nguyen, H.D., Pham, B.T., Lai, T.D., Luu, C. 2023. A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam. Environment, Development and Sustainability, 25(2), 1101–1130.
  • 30. Hajaj, S., El Harti, A., Jellouli, A., Pour, A.B., Himyari, S.M., Hamzaoui, A., Bensalah, M.K., Benaouiss, N., Hashim, M. 2023. HyMap imagery for copper and manganese prospecting in the east of Ameln valley shear zone (Kerdous inlier, western Anti-Atlas, Morocco). Journal of Spatial Science, 1–22.
  • 31. Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., Dlala, M. 2019. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12, 653.
  • 32. Hu, Q., Li, Z., Wang, L., Huang, Y., Wang, Y., Li, L. 2019. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water, 11(3), 579.
  • 33. Ikirri, M., Faik, F., Echogdali, F.Z., Antunes, I.M.H.R., Abioui, M., Abdelrahman, K., Fnais, M.S., Wanaim, A., Id-Belqas, M., Boutaleb, S. 2022. Flood hazard index application in arid catchments: Case of the taguenit wadi watershed, Lakhssas, Morocco. Land, 11(8), 1178.
  • 34. Jari, A., El Mostafa Bachaoui, A.J., El Harti, A., Khaddari, A., El Jazouli, A. 2022. Use of GIS, remote sensing and analytical hierarchy process for groundwater potential assessment in an arid region – A case study. Ecological Engineering and Environmental Technology, 23(5), 234–255.
  • 35. Karmaoui, A., Messouli, M., Khebiza, Y.M., Ifaadassan, I. 2014. Environmental vulnerability to climate change and anthropogenic impacts in dryland,(pilot study: Middle Draa Valley, South Morocco). Journal of Earth Science & Climatic Change, (S11), 002.
  • 36. Kazakis, N., Kougias, I., Patsialis, T. 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Science of the Total Environment, 538, 555–563.
  • 37. Khaddari, A., Bouziani, M., Moussa, K., Sammar, C., Chakiri, S., Hadi, H. E., Jari, A., Titafi, A. 2022. Evaluation of Precipitation Spatial Interpolation Techniques using GIS for Better Prevention of Extreme Events: Case of the Assaka Watershed (Southern Morocco). Eco. Env. & Cons, 28, 1–10.
  • 38. Khosravi, K., Pourghasemi, H.R., Chapi, K., Bahri, M. 2016. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 188, 656.
  • 39. Komi, K., Neal, J., Trigg, M.A., Diekkrüger, B. 2017. Modelling of flood hazard extent in data sparse areas: a case study of the Oti River basin, West Africa. Journal of Hydrology: Regional Studies, 10, 122–132.
  • 40. Kouassi, A., Nassa, R., Yao, K., Kouame, K., Biemi, J. 2018. Modélisation statistique des pluies maximales annuelles dans le District d’Abidjan (Sud de la Côte d’Ivoire). Revue des sciences de l’eau/Journal of Water Science, 31(2), 147–160.
  • 41. Li, Q., Zhou, J., Cai, J., Zhou, J. 2018. The environmental study on flash flood risk zonation based on trapezoidal fuzzy number and grey clustering. Ekoloji, 27(106), 2015–2025.
  • 42. Malekinezhad, H., Sepehri, M., Pham, Q.B., Hosseini, S.Z., Meshram, S.G., Vojtek, M., Vojteková, J. 2021. Application of entropy weighting method for urban flood hazard mapping. Acta geophysica, 69(3), 841–854.
  • 43. Marengo, J.A., Camarinha, P.I., Alves, L.M., Diniz, F., Betts, R.A. 2021. Extreme rainfall and hydrogeo-meteorological disaster risk in 1.5, 2.0, and 4.0° C global warming scenarios: an analysis for Brazil. Frontiers in Climate, 3, 610433.
  • 44. Mas, J.-F., Filho, B.S., Pontius Jr, R.G., Gutiérrez, M.F., Rodrigues, H. 2013. A suite of tools for ROC analysis of spatial models. ISPRS International Journal of Geo-Information, 2(3), 869–887.
  • 45. Mathieu, J., Weisrock, A., Wengler, L., Brochier, J.E., Even, G., Fontugne, M., Mercier, N., Ouammou, A., Senegas, F., Valladas, H. 2004. Holocene deposits in the lower section of the Assaka wadi, South Morocco: Preliminary results. Quaternaire, 15(1–2), 207–218.
  • 46. Mirari, S. 2022. Développement du tourisme durable à travers l’approche du Marketing Territorial dans la province de Guelmim-Maroc. Espace Géographique et Société Marocaine, 57, 93–115.
  • 47. Mirari, S., Benmlih, A. 2018. The Sustainable Development of Oued Noun Oases through the Integration in the Biosphere Reserve Oasis of Southern Morocco. Int. J. Sci. Res, 7, 1211–1218.
  • 48. Mohamed, M.M., Elmahdy, S.I. 2017. Fuzzy logic and multi-criteria methods for groundwater potentiality mapping at Al Fo’ah area, the United Arab Emirates (UAE): an integrated approach. Geocartointernational, 32(10), 1120–1138.
  • 49. Morjani, Z. 2011. Methodology Document for the WHO e-atlas of Disaster Risk. Volume 1. Exposure to Natural Hazards Version 2.0 Flood Hazard Modelling. In: Taroudant Poly-Disciplinary Faculty of the Ibn Zohr University of Agadir.
  • 50. Msaddek, M., Kimbowa, G., El Garouani, A. 2020. Hydrological modeling of upper OumErRabia Basin (Morocco), comparative study of the event-based and continuous-process HEC-HMS model methods. Computational Water, Energy, and Environmental Engineering, 9(4), 159.
  • 51. Mudashiru, R.B., Sabtu, N., Abustan, I., Balogun, W. 2021. Flood hazard mapping methods: A review. Journal of hydrology, 603, 126846.
  • 52. Nandalal, H., Ratnayake, U. 2011. Flood risk analysis using fuzzy models. Journal of Flood Risk Management, 4(2), 128–139.
  • 53. Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., Agha Kouchak, A., Sanders, B., Koren, V., Cui, Z., Smith, M. 2016. A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. Journal of hydrology, 541, 401–420.
  • 54. Nwazelibe, V.E., Unigwe, C.O., Egbueri, J.C. 2023. Testing the performances of different fuzzy overlay methods in GIS-based landslide susceptibility mapping of Udi Province, SE Nigeria.Catena, 220, 106654.
  • 55. Odabas, M.S., Leelaruban, N., Simsek, H., Padmanabhan, G. 2014. Quantifying impact of droughts on barley yield in North Dakota, USA using multiple linear regression and artificial neural network. Neural Network World, 24(4), 343.
  • 56. Onen, F., Bagatur, T. 2017. Prediction of flood frequency factor for Gumbel distribution using regression and GEP model. Arabian Journal for Science and Engineering, 42(9), 3895–3906.
  • 57. Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., Zinabdin, N. 2020. Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) river in Kazakhstan. Water, 12(10), 2672.
  • 58. Parsian, S., Amani, M., Moghimi, A., Ghorbanian, A., Mahdavi, S. 2021. Flood hazard mapping using fuzzy logic, analytical hierarchy process, and multi-source geospatial datasets. Remote Sensing, 13(23), 4761.
  • 59. Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V.R., Murayama, Y., Ranagalage, M. 2020. Sentinel-2 data for land cover/use mapping: a review. Remote Sensing, 12(14), 2291.
  • 60. Pourghasemi, H.R., Beheshtirad, M., Pradhan, B. 2016. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomatics, Natural Hazards and Risk, 7(2), 861–885.
  • 61. Roy, B., Bouyssou, D. 1993. Aide multicritère à la décision: méthodes et cas. Economica Paris.
  • 62. Saaty, T. L. 1977. A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234–281.
  • 63. Saaty, T.L. 1990. How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9–26.
  • 64. Saaty, T.L., Vargas, L.G. 2012. The seven pillars of the analytic hierarchy process. In Models, methods, concepts & applications of the analytic hierarchy process. International Series in Operations Research & Management Science, vol. 175, Springer, Boston.
  • 65. Sadeghi, B., Khalajmasoumi, M. 2015. A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renewable and Sustainable Energy Reviews, 43, 818–831.
  • 66. Sahana, M., Patel, P.P. 2019. A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environmental Earth Sciences, 78, 289.
  • 67. Samanta, R.K., Bhunia, G.S., Shit, P.K., Pourghasemi, H.R. 2018. Flood susceptibility mapping using geospatial frequency ratio technique: a case study of Subarnarekha River Basin, India. Modeling Earth Systems and Environment, 4, 395–408.
  • 68. Schwarz, I., Kuleshov, Y. 2022. Flood Vulnerability Assessment and Mapping: A Case Study for Australia’s Hawkesbury-Nepean Catchment. Remote Sensing, 14(19), 4894.
  • 69. Shafapour Tehrany, M., Kumar, L., Neamah Jebur, M., Shabani, F. 2019. Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomatics, Natural Hazards and Risk, 10(1), 79–101.
  • 70. Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., Rahmati, O. 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto international, 33(9), 927–941.
  • 71. Siler, W., Ying, H. 1989. Fuzzy control theory: The linear case. Fuzzy sets and systems, 33(3), 275–290.
  • 72. Sonmez, O., Bizimana, H. 2020. Flood hazard risk evaluation using fuzzy logic and weightage-based combination methods in geographic information system. Scientia Iranica, 27(2), 517–528.
  • 73. Soulaimani, A., Bouabdelli, M. 2005. Le Plateau de Lakhssas (Anti-Atlas occidental, Maroc): Un graben fini-précambrien réactivé à l’hercynien. Ann. Soc. Géol. Nord, 2(2), 177–184.
  • 74. Soulaimani, A., Ouanaimi, H. 2011. Anti-Atlas et Haut Atlas, circuit occidental. Nouveaux guides géologiques et miniers du Maroc, 3, 9–72.
  • 75. Tabari, H. 2020. Climate change impact on flood and extreme precipitation increases with water availability. Scientific reports, 10(1), 13768.
  • 76. Tah, J.H., Carr, V. 2000. A proposal for construction project risk assessment using fuzzy logic. Construction Management & Economics, 18(4), 491–500.
  • 77. Talha, S., Maanan, M., Atika, H., Rhinane, H. 2019. Prediction of flash flood susceptibility using fuzzy analytical hierarchy process (Fahp) algorithms and Gis: a study case of guelmim region In Southwestern of Morocco. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 407–414.
  • 78. Tanguy, M. 2012. Cartographie du risque d’inondation en milieu urbain adaptée à la gestion de crise: Analyse préliminaire. INRS-Eau, Terre et Environnement: Quebec City, QC, Canada
  • 79. Theilen-Willige, B., Charif, A., El Ouahidi, A., Chaibi, M., Ougougdal, M.A., AitMalek, H. 2015. Flash floods in the Guelmim area/Southwest Morocco–use of remote sensing and GIS-tools for the detection of flooding-prone areas. Geosciences, 5(2), 203–221.
  • 80. Tie, A.G.B., Konan, B., Brou, Y.T., Issiaka, S., Fadika, V., Srohourou, B. 2007. Estimation des pluies exceptionnelles journalières en zone tropicale: cas de la Côte d’Ivoire par comparaison des lois Lognormale et de Gumbel. Hydrological sciences journal, 52(1), 49–67.
  • 81. Vafakhah, M., Mohammad Hasani Loor, S., Pourghasemi, H., Katebikord, A. 2020. Comparing performance of random forest and adaptive neurofuzzy inference system data mining models for flood susceptibility mapping. Arabian Journal of Geosciences, 13, 417.
  • 82. Vakhshoori, V., Zare, M. 2016. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7(5), 1731–1752.
  • 83. Vignesh, K., Anandakumar, I., Ranjan, R., Borah, D. 2021. Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Modeling Earth Systems and Environment, 7(2), 767–781.
  • 84. Wang, Y., Fang, Z., Hong, H., Peng, L. 2020. Flood susceptibility mapping using convolutional neural network frameworks. Journal of hydrology, 582, 124482.
  • 85. Wang, Y., Hong, H., Chen, W., Li, S., Pamučar, D., Gigović, L., Drobnjak, S., Tien Bui, D., Duan, H. 2018. A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sensing, 11(1), 62.
  • 86. Werren, G., Reynard, E., Lane, S.N., Balin, D. 2016. Flood hazard assessment and mapping in semi-arid piedmont areas: a case study in Beni Mellal, Morocco. Natural Hazards, 81, 481–511.
  • 87. Yurdakul, M. 2004. AHP as a strategic decision-making tool to justify machine tool selection. Journal of Materials Processing Technology, 146(3), 365–376.
  • 88. Zadeh, L.A. 1965. Fuzzy sets. Information and control, 8(3), 338–353.
  • 89. Zorn, M. 2018. Natural disasters and less developed countries. In: Pelc, S., Koderman, M. (Eds.), Nature, Tourism and Ethnicity as Drivers of (De)Marginalization. Perspectives on Geographical Marginality, vol. 3. Springer, Cham.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c2344035-0ea5-4ef9-9155-077cecb11965
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.