Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 41, no. 4 | 1505--1517
Tytuł artykułu

Segmentary strategy in modeling of cardiovascular system with blood supply to regional skin

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: The focus of this study is to model the cardiovascular system (CS) involving regional skin blood flow (SBF) to gain new insights into the skin-CS relationship. Methods: A lumped parameter model with a series of electrical components was developed to model the CS involving SBF. Four parts were considered: the heart, arterial circulation, microcirculation (including the skin and other tissues), and the venous system. The model was validated based on previous publications. Additionally, the body surface was divided into seven blocks replaced by lumped resistances in this model, including the head, upper limbs and neck, chest and back, anterolateral abdomen, posterior abdomen, lower limbs, and buttocks. The SBF of each block was described using a weighted average method (relative ratio of cutaneous blood perfusion and regional body surface area) Results: Cardiodynamics characterized the properties of cardiac cycles, including isovolumic contraction, accelerated ejection, decelerated ejection, isovolumic diastole, and filling phases. Blood flow and pulse pressure in the arterial trunk declined and increased, respectively, from the aorta root to the distal portion, exhibiting normal cardiovascular properties. Accordingly, the blood pressure of the arterial branches attached to the arterial trunk also satisfied normal physiological characteristics; the blood flow of all the arterial branches exhibited good agreement with previous studies. Additionally, the modeled SBF of each region was consistent with the data from the weighted average method. Conclusion: This model effectively demonstrates the normal properties of the CS that involves regional SBF and may be promising in the prediction of the skin-CS relationship.
Wydawca

Rocznik
Strony
1505--1517
Opis fizyczny
Bibliogr. 83 poz., rys., tab., wykr.
Twórcy
autor
  • Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Chengdu, China
  • Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Chengdu, China, scubme@aliyun.com
autor
  • Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Chengdu, China
autor
  • Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Chengdu, China
autor
  • Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Chengdu, China
autor
  • Department of Mechanical Science and Engineering, Sichuan University, Chengdu, China
autor
  • Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
Bibliografia
  • [1] Liu J, Mu J, Zheng C, Chen X, Guo Z, Huang C, et al. Systems-pharmacology dissection of traditional Chinese medicine compound saffron formula reveals multi-scale treatment strategy for cardiovascular diseases. Sci Rep 2016;6:19809.
  • [2] Botnar R, Rappitsch G, Beat Scheidegger M, Liepsch D, Perktold K, Boesiger P. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 2000;33(2):137–44.
  • [3] Perktold K, Resch M, Peter RO. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech 1991;24(6):409–20.
  • [4] Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 2011;124(7):779–88.
  • [5] Long Q, Xu XY, Ramnarine KV, Hoskins P. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J Biomech 2001;34(10):1229–42.
  • [6] Zhang P, Sun A, Zhan F, Luan J, Deng X. Hemodynamic study of overlapping bare-metal stents intervention to aortic aneurysm. J Biomech 2014;47(14):3524–30.
  • [7] Rikhtegar F, Edelman ER, Olgac U, Poulikakos D, Kurtcuoglu V. Drug deposition in coronary arteries with overlapping drug-eluting stents. J Controlled Release 2016;238:1–9.
  • [8] Liu X, Fan Y, Deng X. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann Biomed Eng 2010;38(3):917–26.
  • [9] Li Z, Yan F, Yang J, Chen Yu, Xu Z, Jiang W, et al. Hemodynamics and oxygen transport through pararenal aortic aneurysm treated with multilayer stent: A numerical study. Ann Vasc Surg 2019;54:290–7.
  • [10] Li X, Liu X, Zhang P, et al. Numerical simulation of hemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness. J R Soc Interface 2017;14(129):20170140.
  • [11] Liang F, Liu H. A closed-loop lumped parameter computational model for human cardiovascular system. JSME Int J Series C 2005;48(4):484–93.
  • [12] Avanzolini G, Barbini P, Cappello A, Cevenini G. CADCS simulation of the closed-loop cardiovascular system. Int J Biomed Comput 1988;22(1):39–49.
  • [13] Liang FY, Takagi S, Himeno R, Liu H. Biomechanical characterization of ventricular-arterial coupling during aging: A multi-scale model study. J Biomech 2009;42(6):692–704.
  • [14] Müller LO, Toro EF. A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int J Numer Method Biomed Eng 2014;30(7):681–725.
  • [15] Abdi M, Karimi A, Navidbakhsh M, Pirzad Jahromi G, Hassani K. A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system. Int J Numer Model Electron Networks Devices Fields 2015;28(3):346–57.
  • [16] Liang F, Takagi S, Himeno R, Liu H. Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med Biol Eng Compu 2009;47(7):743–55.
  • [17] Canuto D, Chong K, Bowles C, Dutson EP, Eldredge JD, Benharash P. A regulated multiscale closed-loop cardiovascular model, with applications to hemorrhage and hypertension. Int J Numer Methods Biomed Eng 2018;34(6):1–25.
  • [18] Gu, K, et al. Lumped parameter model for heart failure with novel regulating mechanisms of peripheral resistance and vascular compliance. Asaio J, 2012;58(3): 223-31.
  • [19] Jung E, Lee W. Lumped parameter models of cardiovascular circulation in normal and arrhythmia cases. J. Korean Math. Soc 2006;43(4):885–97.
  • [20] Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, et al. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech 2006;39(6):1010–20.
  • [21] Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, et al. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 2009;37(11):2153–69.
  • [22] Esmaily Moghadam M, Vignon-Clementel IE, Figliola R, Marsden AL. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J Comput Phys 2013;244:63–79.
  • [23] Fujita S, Ikeda Y, Miyata M, Shinsato T, Kubozono T, Kuwahata So, et al. Effect of Waon Therapy on oxidative stress in chronic heart failure. Circ J 2011;75(2):348–56.
  • [24] Tomoko I, Burnett JJC, Scott CG, et al. Neurohumoral modulation during Waon therapy in chronic heart failure-subanalysis of Waon-CHF study. Circ J 2017;81(5):709–16.
  • [25] Tei C, Imamura T, Kinugawa K, et al. Waon therapy for managing chronic heart failure- results from a multicenter prospective randomized WAON-CHF study. Circ J 2016;80(4):827–34.
  • [26] Tei C, Horikiri Y, Park J-C, Jeong J-W, Chang K-S, Toyama Y, et al. Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation 1995;91(10):2582–90.
  • [27] Tei C, Tanaka N. Thermal vasodilation as a treatment of congestive heart failure: a novel approach. J Cardiol 1996;27(1):29–30.
  • [28] Gravel H, Behzadi P, Cardinal S, Barry H, Neagoe P-E, Juneau M, et al. Acute vascular benefits of Finnish sauna bathing in patients with stable coronary artery disease. Can J Cardiol 2021;37:493–9. https://doi.org/10.1016/j.cjca.2020.06.017.
  • [29] Laukkanen JA, Kunutsor SK. Is sauna bathing protective of sudden cardiac death? A review of the evidence. Prog Cardiovasc Dis 2019;62(3):288–93.
  • [30] Francesco Z, Tanjaniina L, Peter W, et al. Sauna bathing and incident hypertension: A prospective cohort study. Am J Hypertens, 2017, 30(11): 1120-25.
  • [31] Laganà K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, et al. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 2005;38(5):1129–41.
  • [32] Tur E, Tur M, Maibach HI, Guy RH. Basal perfusion of the cutaneous microcirculation: measurements as a function of anatomic position. J Invest Dermatol 1983;81(5):442–6.
  • [33] Inoue Y, Shibasaki M, Hirata K, Araki T. Relationship between skin blood flow and sweating rate, and age related regional differences. Eur J Appl Physiol 1998;79(1):17–23.
  • [34] Park D-H, Hwang J-W, Jang K-S, Han D-G, Ahn K-Y. Mapping of the human body skin with laser Doppler flowmetry. Ann Plast Surg 1997;39(6):597–602.
  • [35] Stücker M, Steinberg J, Memmel U, Avermaete A, Hoffmann K, Altmeyer P. Differences in the two-dimensionally measured laser Doppler flow at different skin localisations. Skin Pharmacol Physiol 2001;14(1):44–51.
  • [36] Zhao xiumei, Liu Yuying, et al. Measurement of cutaneous blood flow in different regions of 100 healthy individuals (in Chinese). Chin J Microcirc 2004;14(2):43–5.
  • [37] Song Dandan, Li Yuzhe, et al. Skin temperature, blood perfusion and local heating effect in healthy Chinese (in Chinese). 2013, 23(3):28-30.
  • [38] Tsuchida Y. Regional differences in the skin blood flow at various sites of the body studied by xenon 133. Plast Reconstr Surg 1987;80(5):705–8.
  • [39] Irazuzta JE, Berde CB, Sethna NF. Laser Doppler measurements of skin blood flow before, during, and after lumbar sympathetic blockade in children and young adults with reflex sympathetic dystrophy syndrome. J Clin Monit 1992;8(1):16–9.
  • [40] Slaheddine M, Howard, et al. Biophysical parameters of skin: map of human face, regional, and age-related differences. Contact Dermatitis 2007;57(1):28–34.
  • [41] Hertzman AB, Randall WC. Regional differences in the basal and maximal rates of blood flow in the skin. J Appl Physiol 1948;1(3):234–41.
  • [42] Hertzman AB, Randall WC, Jochim KE. Relations between cutaneous blood flow and blood content in the finger pad, forearm, and forehead. Am J Physiol 1947;150(1):122–32.
  • [43] Winsor T, Haumschild DJ, Winsor DW, Wang Y, Luong TN. Clinical application of laser Doppler flowmetry for measurement of cutaneous circulation in health and disease. Angiology 1987;38(10):727–36.
  • [44] Kelly RI, Pearse R, Bull RH, Leveque J-L, de Rigal J, Mortimer PS. The effects of aging on the cutaneous microvasculature. J Am Acad Dermatol 1995;33(5):749–56.
  • [45] Harbi P, Thacher T. Body mapping of human cutaneous microcirculatory perfusion using a real-time laser Doppler imager. Diab Vasc Dis Res 2013;10(2):187–90.
  • [46] Shahrbanian S, Kuspinar A, Duquette P, E. Mayo N. What does pain in MS feel like? A multicenter cross-sectional study of pain descriptors and characteristics. Internal Med Care 2017;1(2):1–8.
  • [47] Hothi DK, Geary DF. Pediatric hemodialysis prescription, efficacy, and outcome. Compr Pediatr Nephrol 2008:867–93.
  • [48] Nguyen Y, Naseer N, Frishman WH. Sauna as a therapeutic option for cardiovascular disease. Cardiol Rev 2004;12(6):321–4.
  • [49] Zhao X, Liu Y, Ma L, Wang W, Xie J, Qiao A. Hemodynamic comparison between normal graft and Y-type graft in coronary artery bypass grafting: a numerical study using 0D/3D coupling method. J Mech Med Biol 2015;15(04):1550053.
  • [50] Mitchell JR, Wang J-J. Expanding application of the Wiggers diagram to teach cardiovascular physiology. Adv Physiol Educ 2014;38(2):170–5.
  • [51] Chandran KB, Rittgers SE, Yoganathan AP. Biofluid mechanics: the human circulation. CRC Press; 2012.
  • [52] Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 2009;297(1): H208–22.
  • [53] Zhao SZ, Ariff B, Long Q, Hughes AD, Thom SA, Stanton AV, et al. Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J Biomech 2002;35(10):1367–77.
  • [54] Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 2010;38(10):3195–209.
  • [55] Kalaria VG, Jacob S, Irwin W, Schainfeld RM. Duplex ultrasonography of vertebral and subclavian arteries. J Am Soc Echocardiogr 2005;18(10):1107–11.
  • [56] Huo Y, Kassab GS. Pulsatile blood flow in the entire coronary arterial tree: theory and experiment. Am J Physiol Heart Circ Physiol 2006;291(3):H1074–87.
  • [57] Huo Y, Kassab GS. A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol 2007;292(6):H2623–33.
  • [58] Costa E.D. Hemodynamics in the left coronary artery-numerical and in vitro approaches. 2016.
  • [59] Vignon IE, Taylor CA. Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries. Wave Motion 2004;39(4):361–74.
  • [60] Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech 2006;195(29-32):3776–96.
  • [61] Asbeutah AM, Buredha B, Mahmood M, Al-Mohana A. Doppler waveform characteristics in the celiac and superior mesenteric arteries in normal children and adults with the use of duplex ultrasound. J Vasc Ultrasound 2008;32(3):133–6.
  • [62] LeeW-H, Hsu P-C, Chu C-Y, Chen S-C, Lee H-H, Lee M-K, et al. Systolic time intervals derived from electrocardiographic gated intra-renal artery Doppler waveform associated with left ventricular systolic function. Sci Rep 2016;6(1). https://doi.org/10.1038/srep29293.
  • [63] Erden A, Cumhur T, Ölçer T. Superior mesenteric artery Doppler waveform changes in response to inflammation of the ileocecal region. Abdom Imag, 1997;22(5): 483-86.
  • [64] Wood MM, Romine LE, Lee YK, et al. Spectral Doppler signature waveforms in ultrasonography: a review of normal and abnormal waveforms. Ultrasound Q, 2010, 26(2):83-99.
  • [65] Pellerito JS, Revzin MV, Tsang JC, et al. Doppler sonographic criteria for the diagnosis of inferior mesenteric artery stenosis. J Ultrasound Med, 2009, 28(5):641-50.
  • [66] Mirk P, Palazzoni G, Cotroneo AR, di Stasi C, Fileni A. Sonographic and Doppler assessment of the inferior mesenteric artery: normal morphologic and hemodynamic features. Abdom Imaging 1998;23(4):364–9.
  • [67] Raines JK, Jaffrin MY, Shapiro AH. A computer simulation of arterial dynamics in the human leg. J Biomech 1974;7(1):77–91.
  • [68] Raghu R, et al. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. J Biomech Eng, 2011;133(8): 081003.
  • [69] Cooper KJ, Peña C, Benenati J. Determining end points for critical limb ischemia interventions. Tech Vasc Interv Radiol 2016;19(2):104–12.
  • [70] Heusinkveld MHG, Huberts W, Lumens J, Arts T, Delhaas T, Reesink KD, et al. Large vessels as a tree of transmission lines incorporated in the CircAdapt whole-heart model: A computational tool to examine heart-vessel interaction. PLoS Comput Biol 2019;15(7):e1007173.
  • [71] Görg C, Bert T, Görg K, Heinzel-Gutenbrunner M. Colour Doppler ultrasound mapping of chest wall lesions. Br J Radiol 2005;78(928):303–7.
  • [72] Espahbodi S, Doré CJ, Humphries KN, Hughes SPF. Color Doppler ultrasonography of lumbar artery blood flow in patients with low back pain. Spine 2013;38(4):E230–6.
  • [73] Akihiro O, Kiyoshi, et al. Vascular waveform analysis of flap-feeding vessels using color Doppler ultrasonography. Plast Surg Int 2014:1–8.
  • [74] Zaccardi MJ, Hadlock J, et al. Duplex scanning prior to flap procedures for breast reconstruction. Thorac Key 2012.
  • [75] Giannetti N, Juneau M, Arsenault A, Behr MA, Grégoire J, Tessier M, et al. Sauna-induced myocardial ischemia in patients with coronary artery disease. Am J Med 1999;107(3):228–33.
  • [76] Radtke T, Poerschke D, Wilhelm M, Trachsel LD, Tschanz H, Matter F, et al. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure. Eur J Prev Cardiol 2016;23(6):593–601.
  • [77] Flouris AD, Bravi A, Wright-Beatty HE, Green G, Seely AJ, Kenny GP. Heart rate variability during exertional heat stress: effects of heat production and treatment. Eur J Appl Physiol 2014;114(4):785–92.
  • [78] Lotufo PA. Winter and cardiovascular mortality. J Am Coll Cardiol, 1999, 34(7):2150-2150.
  • [79] Kunutsor SK, Laukkanen T, Laukkanen JA. Sauna bathing reduces the risk of respiratory diseases: a long-term prospective cohort study. Eur J Epidemiol 2017;32(12):1107–11.
  • [80] Seidel H, Herzel H. Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex. Physica D 1998;115(1-2):145–60.
  • [81] Cheng L, Ivanova O, Fan H-H, Khoo MCK. An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respir Physiol Neurobiol 2010;174(1-2):4–28.
  • [82] Porta A, Bari V, Bassani T, Marchi A, Pistuddi V, Ranucci M. Model-based causal closed-loop approach to the estimate of baroreflex sensitivity during propofol anesthesia in patients undergoing coronary artery bypass graft. J Appl Physiol 2013;115(7):1032–42.
  • [83] Bezruchko BP et al. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. J Am Soc Hypertens 2016:1–9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c2177443-101a-4bc9-b50a-acb1d7d76bf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.