Czasopismo
2024
|
Vol. 72, no 1
|
81--95
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let T(x) be the first time the time-homogeneous jump-diffusion process X(t), starting from X(0) = x, leaves the interval (a, b). The jump size is assumed to have an asymmetric double exponential distribution. The integro-differential equation satisfied by the moment-generating function of T(x) is transformed into an ordinary differential equation and is solved explicitly in particular cases. Explicit and exact results are also obtained for the mean of T(x) as well as the probability P[X(T(x)) ≤ a].
Rocznik
Tom
Strony
81--95
Opis fizyczny
Bibliogr. 9 poz., wykr.
Twórcy
autor
- Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Montréal, Québec, Canada H3C 3A7, mlefebvre@polymtl.ca
Bibliografia
- [1] M. Abundo, On first-passage times for one-dimensional jump-diffusion processes, Probab. Math. Statist. 20 (2000), 399–423.
- [2] M. Abundo, On the first hitting time of a one-dimensional diffusion and a compound Poisson process, Methodology Computing Appl. Probab. 12 (2010), 473–490.
- [3] L. Bo and M. Lefebvre, Mean first passage times of two-dimensional processes with jumps, Statist. Probab. Lett. 81 (2011), 1183–1189.
- [4] H. Ghamlouch, A. Grall and M. Fouladirad, On the use of jump-diffusion process for maintenance decision-making: A first step, in: Annual Reliability and Maintainability Symposium (RAMS), IEEE, 2015, 6 pp.
- [5] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, New York, 1972.
- [6] S. G. Kou and H. Wang, First passage times of a jump diffusion process, Adv. Appl. Probab. 35 (2003), 504–531.
- [7] M. Lefebvre, LQG homing for jump-diffusion processes, ROMAI J. 10 (2014), 147–152.
- [8] R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financial Economics 3 (1976), 125–144.
- [9] J. Peng and Z. Liu, First passage time moments of jump-diffusions with Markovian switching, Int. J. Stochastic Anal. 2011, art. 501360, 11 pp.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c20c1bb8-a7dc-4384-8ee6-ce6fe7dfb778