Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 16, nr 2(48) | 5--20
Tytuł artykułu

Factorial design based optimisation of crevice corrosion for type 304 stainless steel in chloride solutions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of chloride concentration, creviced scaling factor and immersion time on the percentage area and maximum depth of attack for Type 304 stainless steel (SS304) in chloride solutions were investigated. The crevice assembly comprised of coupon (SS-304), polytetrafluoroethylene (crevice former) and fasteners (titanium bolt, nut and washers). The full immersion tests were based on ASTM G-78 using full factorial design to study the effects of chloride concentration (1.5, 3.0 and 4.5 w/w%), crevice scaling factor (8, 16 and 24) and immersion time (15, 30 and 45 days) on the percentage area of attack (Y1) and maximum depth of attack (Y2) of SS-304. Data obtained was used to develop and optimize the models of Y1 and Y2 in terms of the three factors using Response Surface Methodology (RSM). The R2 of Y1 and Y2 were 0.98 and 0.91, respectively. The minimum Y1 (5.63%) and Y2 (3.32×10−7 mm) were obtained at 4.5% chloride concentration, 20 scaling factor and 15 days immersion time. The predicted optimal conditions agreed with the experimental results for validation with a maximum absolute relative error of 5.75%.
Wydawca

Rocznik
Strony
5--20
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., tab.
Twórcy
  • Department of Chemical Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria., ooogunleye@lautech.edu.ng
  • Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.
  • Department of Mechanical Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
Bibliografia
  • 1 Du, N., Tian, W.M., Zhao, Q. and Chen, S.B., Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5% NaCl solution. Acta Metallurgica Sinica, 48 (7) (2012), 807–814.
  • 2 Kazuki, F., Nobuko, Y., Minato, E. and Masayuki, M., Anodic behaviour of stainless steel substrate in organic electrolyte solutions containing different lithium salts, Electrochimica Acta. 140 (2014), 125–131.
  • 3 Tian, W., Li, S., Du, N., Chen, S. and Wu, Q., Effect of applied potential on stable pitting of 304 stainless steel. Corrosion Science, 93(1) (2015), 242-255.
  • 4 Heppner, K.L., Evitts, R.W., and Postlethwaite, J., Prediction of the crevice corrosion incubation period of passive metals at elevated temperatures. Part I. Mathematical model. Canadian Journal of Chemical Engineering, 1(8) (2002), 849–856.
  • 5 Kennell G. F., Evitts R W. and Heppner K. L., A critical crevice solution and IR drop crevice corrosion model. Corrosion Science, 1(5) (2008), 1716–1725.
  • 6 Hu, Q., Zhang, G., Qiu., Y. and Guo, X., The crevice corrosion behaviour of stainless steel in sodium chloride solution. Corrosion Science, 53(12) (2011), 4065-4072.
  • 7 Matjaž, T., Franc, T. and Matjaž G., Crevice corrosion of stainless-steel fastening components in an indoor marine-water basin. MTAEC9, 46(4) (2012), 423-428.
  • 8 Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., Turgoose S., Measures for the detection of localized corrosion with electrochemical noise. Electrochimica Acta, (46) (2001), 3665–3674.
  • 9 Li, W., Yuan, B., Wang, C., Li, L. and Chen S., Dynamic sensing of localized corrosion at the metal/solution interface. Sensors, 12 (2012), 4962-4973.
  • 10 Szklarska-Smialowska Z. Pitting corrosion of metals, in: National Association of Corrosion Engineers, Houston, TX 1(1) (1996), 69-72.
  • 11 Pickering, H.W., Important early developments and current understanding on the IR mechanism of localized corrosion. Journal of Electrochemical Society, 15(1) (2003), K1–K12.
  • 12 Lee, T. S., Kain, R. M. and Oldfield, J.W., Effect of environmental variables on crevice corrosion of stainless steels in seawater. Material Performance, 2(3) (2004), 7-9.
  • 13 Sharland, S. M. and Tasker, P. W. (1988) A mathematical model of crevice and pitting corrosion. I. The physical model. Corrosion Science. 2(8), 603–620.
  • 14 Walton, J. C., Cragnolino, G. and Kalandros, S. K. (1996) A numerical model of crevice corrosion for passive and active metals. Corrosion Science, 3(8), 1–18.
  • 15 White, S. P., Weir, G. J. and Laycock, N. J., Calculating chemical concentrations during the initiation of crevice corrosion. Corrosion Science, 4(2) (2000) 605–629.
  • 16 Yuki, O., Jumpei, T., Kenji, A., Hiroshi, Y., and Keisuke H., Numerical method for time - dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method. Corrosion Science, 6(3) (2012), 210–224.
  • 17 De Jong, L.A. and Kelly, R.G., The Demonstration of the Microfabrication of Rigorously Defined Crevices for the Investigation of Crevice Corrosion Scaling Laws, in Critical Factors in Localized Corrosion III, The Electrochemical Society: Pennington, NJ. (1999), 678-688.
  • 18 Postlethwaite, J., Evitts, R. W., Watson, M. K., Modelling the initiation of crevice corrosion of passive alloys at elevated temperature. NACE International, 19(2) (1995), 367 – 377.
  • 19 Hepsen, R. and Kaya, Y., Optimization of membrane fouling using experimental design: an example from dairy wastewater treatment, Industrial and Engineering Chemistry Research. 51 (49) (2012),16074–16084.
  • 20 Gu, T., Chen, Z., Jiang, X., Zhou, L., Liao, Y., Duan, M. and Wang, H., Synthesis and inhibition of N-alkyl-2-(4-hydroxybut-2-ynl) pyridinium bromide for mild steel in acid solution: Box-Behnken design optimisation and mechanism probe. Corrosion Science, 90 (2015), 118-132.
  • 21 ASTM Standard G78 (2007). Standard Guide for Crevice Corrosion Testing of Iron-Base and Nickel-Base Stainless Alloy in Seawater and Other Chloride-Containing Aqueous Environments.
  • 22 Cai, B., Lui, Y., Tian, X., Wang, F., Li, H. and Ji, R., An experimental study of crevice behaviour of 316L stainless steel in artificial seawater. Corrosion Science, 52 (2010), 3235-3242.
  • 23 Yang, Y. Z., Jiang, Y. M. and Li, J., In situ investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution. Corrosion Science, 76 (2013), 163-169.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c1f985f7-6aec-47f6-89c4-1247a2f55775
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.