Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 26, No. 4 | 470--480
Tytuł artykułu

Taxonomic classification of algae by the use of chlorophyll a fluorescence

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural water reservoirs are very important ecosystems thus they should be under continuous monitoring and protection. In water of low quality, the algal blooms develop develops vastly. The knowledge of algal species composition is necessary for understanding this process. There are a few traditional group-specific methods of microalgae classification, but they are often labour-intense and time-consuming. Moreover, the samples must be prepared and/or collected before getting any results. Non-invasive chlorophyll fluorescence analysis offers an alternative approach and potentially allows in situ estimation of algal concentration. In this work the fluorometric methods to estimate algae content in water and to differentiate algal populations is presented.
Słowa kluczowe
Wydawca

Rocznik
Strony
470--480
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Department of Environment Improvement, Warsaw University of Life Sciences – SGGW
  • Institute of Environmental Engineering, Czestochowa University of Technology
autor
  • Nurture Earth R and D Pvt. Ltd.
autor
  • bbe Moldaenke GmbH
  • Department of Plant Physiology, Warsaw University of Life Sciences – SGGW; Falenty Institute of Technology and Life Sciences (ITP)
Bibliografia
  • Beutler, M., Wiltshire, K.H., Luring, C., Moldaenke, C., Lohse, D. & Abbas, Z. (2002a). Fluorometric depth-profiling of chlorophyll corrected for yellow substances. Actes de Colloques-ifremer, 231-238.
  • Beutler, M., Wiltshire, K.H., Meyer, B., Moldaenke, C. & Dau, H. (1998). Rapid depth-profiling of the distribution of spectral groups of microalgae in lakes, rivers and the sea. Photosynthesis: Mechanisms and Effects, 5, 4301-4304.
  • Beutler, M., Wiltshire, K.H., Meyer, B., Moldaenke, C., Lüring, C., Meyerhöfer, M. & Hansen, U-P. (2002b). A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research 72, 39-53.
  • Catherine, A., Escoffier, N., Belhocine, A., Nasri, A.B., Hamlaoui, S., Yéprémian, C. & Troussellier, M. (2012). On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Research, 46(6), 1771-1784.
  • Concas, A., Steriti, A., Pisu, M. & Cao, G. (2014). Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors. Bioresource Technology, 153, 340-350.
  • Dau, H. (1994). Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochemistry and Photobiology, 60(1), 1-23.
  • Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327/1.
  • Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C. M., Tranvik, L.J., Striegl, R.G. & Middelburg, J.J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388-2397.
  • Edgar, R.K. & Laird, K. (1993). Computer simulation of error rates of Poisson-based interval estimates of plankton abundance. Hydrobiologia, 264(2), 65-77.
  • van den Hoek, C., Mann, D.G. & Jahns, H.M. (1995). Algae: An Introduction to Phycology. Cambridge, UK: Cambridge University Press.
  • Houliez, E., Lizon, F., Thyssen, M., Artigas, L.F. & Schmitt, F.G. (2011). Spectral fluorometric characterization of Haptophyte dynamics using the FluoroProbe: an application in the eastern English Channel for monitoring Phaeocystis globosa. Journal of Plankton Research, fbr091.
  • Kim, S., Park, J., Cho, J-B. & Hwang, S.J. (2013). Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology, 144, 8-13.
  • Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M. & Tys, J. (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosystems Engineering, 37, 735-741.
  • Larson, C. & Passy, S.I. (2005). Spectral fingerprinting of Algal communities: A novel approach to biofilm analysis and aiomonitoring. Journal of Phycology, 41(2), 439-446.
  • Leboulanger, C., Dorigo, U., Jacquet, S., Le Berre, B., Paolini, G. & Humbert, J.F. (2002). Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case study. Aquatic Microbial Ecology, 30(1), 83-89.
  • Lenzi, M., Salvaterra, G., Gennaro, P., Mercatali, I., Persia, E., Porrello, S. & Sorce, C. (2015). A new approach to macroalgal bloom control in eutrophic, shallow-water, coastal areas. Journal of Environmental Management, 150, 456-465.
  • Mokros, A. & Kobarg, S. (2013). Online Monitoring of Raw Water for Planktothrix rubescens. Wasser-praxis – DVGW-Jahresrevue, 12.
  • Søndergaard, M. & Jeppesen, E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 44(6), 1089-1094.
  • Török, L. (2009). A new approach to assess the phytoplankton biomass in Danube Delta Biosphere Reserve. Scientific Annals of the Danube Delta Institute, Tulcea – Romania.
  • Zabochnicka-Świątek, M. (2015). Wspomaganie wychwytu CO2 metodą biotechnologiczną, In W. Nowak, M. Ściążko, T. Czakiert (Eds), Spalanie tlenowe dla kotłów pyłowych i fluidalnych zintegrowanych z wychwytem CO2, Doświadczenia z instalacji pilotowych i perspektywy dla instalacji demonstracyjnych (pp. 196-212). Częstochowa: Wydawnictwo Politechniki Częstochowskiej.
  • Wong, C.K. & Wong, C.K. (2003). HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong. Chemosphere, 52(9), 1633-1640.
  • Zabochnicka-Świątek, M. (2017). Usuwanie azotu amonowego ze ścieków w procesie sorpcji i biosorpcji. Monografia 324. Częstochowa: Wydawnictwo Politechniki Częstochowskiej.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c1a5ac1b-df43-407f-933a-aaaaddedda1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.