Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | Nr 2 | 128--136
Tytuł artykułu

Grafen – metody otrzymywania a zastosowanie i właściwości

Warianty tytułu
EN
Graphene - methods of manufacturing and its application and properties
Języki publikacji
PL
Abstrakty
PL
Dokonano przeglądu literatury dotyczącej metod otrzymywania grafenu. Omówiono różne sposoby otrzymywania tego materiału, a także jego pochodnych, takich jak tlenek grafenu. Szczególną uwagę zwrócono na metodę bezpośredniej eksfoliacji grafitu. Przedstawiono również najważniejsze możliwości zastosowania grafenu i jego pochodnych.
EN
A review of the literature on methods of obtaining graphene was performed. Various methods for the preparation of graphene and its derivatives such as graphen oxide, were discussed. In particular, the attention was paid to a direct method of graphite’s exfoliation. The main possibilities of the use of graphene and its derivatives were also presented.
Wydawca

Czasopismo
Rocznik
Tom
Strony
128--136
Opis fizyczny
Bibliografia 56 poz., rys.
Twórcy
autor
  • Instytut Chemicznej Przeróbki Węgla, Zabrze
Bibliografia
  • 1. University of Manchester scientists win the Nobel Prize for Physics, http://www.manchester.ac.uk/aboutus/news/display/?id=6192 - 05.10.2010.
  • 2. Paszkiewicz S., Szymczyk A., Spitalsky Z, Mosnacek J., Rosłaniec Z, Struktura i właściwości termiczne nanokompozytów ekspandowany grafit (EG)/poli(tereftalan etylu)(PET). Chemik, 2012, t. 66, nr 1, s. 21.
  • 3. Torbicz W., Pijanowska D.G., Zastosowanie grafenu w technice pomiarowej. Przegląd Elektrotechniczny, 2012, t. 88, nr 6, s. 1.
  • 4. Krupka J., Strupiński W., Stefański A., Baszun M, Mączeński Z., Pomiary elektromagnetycznych właściwości metamateriałów planarnych i grafenu w paśmie częstotliwości mikrofalowych. Elektronika, 2011, nr 2, s. 65.
  • 5. Krasodomski W., Krasodomski M., Otrzymywanie i modyfikacja chemiczna grafenu. Przemysł Chemiczny, 2011, t. 90, nr 8, s. 1508.
  • 6. Rozpłoch F., Patyk J., Stankowski J., Szroeder P., Siły wiązania metalicznego między płaszczyznami grafenowymi w graficie. Karbo, 2008, t. 53, nr 1, s. 9.
  • 7. Kim H., Abdala A.A., Macosko C.W., Graphene/polymer nanocomposites. Macromolecules, 2010, t. 43, s. 6515.
  • 8. Bojanowicz J., Czy nanocarbon pomoże grafenowi? Przegląd Techniczny, 2011, nr 25, s. 13.
  • 9. Anonim, Nagrody Nobla w dziedzinie chemii i fizyki w 2010r. Przemysł Chemiczny, 2010, t. 89, nr 12, s. 1722.
  • 10. Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V, Geim A.K, Unimpeded permeation of water through helium-leak - tight graphene-based membranes. Science, 2012, nr 335, s. 442.
  • 11. Szuber J., Czempik G., Larciprete R., Koziej D., Adamowicz B., XPS study of the L-CVD deposited SnO<sub>2</sub> thin films exposed to oxygen and hydrogen. Thin Solid Films, 2001, nr 391, s. 198.
  • 12. Krzywiecki M., Grządziel L., Ottaviano L., Parisse P., Santucci S., Szuber J., XPS study of air exposed CuPc ultra-thin films deposited on Si (111) native substrates, Materials Science Poland, 2008, nr 26, s. 287.
  • 13. Zangwill A., Physics at Surfaces, Cambridge University Press, 1988, s. 421.
  • 14. Elmquist R.E., Shen T., Jones G.R., Hernandez-Marquez F.L., Real M.A., Newell D.B., Graphene production for electrical metrology. Elektronika, 2011, nr 6, s. 22.
  • 15. Li Z., Zhu H., Wang K., Wei J., Gui X., Li X., Li Ch., Fan L., Sun P., Wu D., Ethanol flame synthesis of highly transparent carbon thin films. Carbon, 2011, t. 49, s. 237.
  • 16. Levchenko I., Volotskova O., Shashurin A., Raitses Y., Ostrikov K., Keidar M., The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes. Carbon, 2010, t. 48, s. 4570.
  • 17. Ossler F., Wagner J.B., Canton S.E., Wallenberg L.R., Sheet-like carbon particles whit graphene structures obtained from a Bunsen flame. Carbon, 2010, t. 48, s. 4203.
  • 18. Wysmołek A., Tworzydło J., Drabińska A., Baranowski J., Dwa wymiary grafenu, Fizyka Materiałów, 2011, t. 4, s. 16.
  • 19. Chu B. H., Nicolosi J., Lo C.F., Strupiński W., Pearson S.J., Ren F., Effect of coated platinium thickness on hydrogen detect sensitivity of graphene-based sensors. Electrochemical and Solide-State Letters, 2011, t. 14, nr 7, s. 43.
  • 20. Chahardeh J.B., Areview on graphene transistors. International Journal of Advanced Research in Computer and Communication Engineering, 2012, nr 1, s. 193.
  • 21. Lin Y.-M., Valdes-Garcia A., Han S.-J., Farmer D.B., Meric I., Sun Y, Wu Y., Dimitrakopoulos Ch., Grill A., Avouris P.,. Jenkins K. A., Wafer-scale graphene integrated circuit. Science, 2011, nr 332, s. 1294.
  • 22. Mueller T., Xia F, Avouris P., Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, nr 4, s. 297.
  • 23. Chu B. H., Lo C.F., Nicolosi J., Chang C.Y., Chen V., Strupinski W., Pearton S.J., Ren F., Hydrogen detection using platinum coated graphene grown on SiC. Sensors and Actuators B, 2011, nr 157, s. 500.
  • 24. Sprinkle M., Hicks J., Tejeda A., Taleb-Ibrahimi A., Le Fèvre P., Bertran F, Tinkey H., Clark M.C., Soukiassian P., Martinotti D., Hass J., Konrad E.H., Multilayer epitaxial graphene grown on the SiC (0001) surface; structure and electronic properties. Journal of Physics D: Applied Physics, 2010, t. 43, s. 374006.
  • 25. Paredes J.I., Villar-Rodil S., Fernández-Merino M.J., Guardia L., Martinez-Alonso A., Tascón J.M.D., Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. Journal of Materials Chemistry, 2011, nr 21, s. 298.
  • 26. StankovichS., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y, Wu Y., SonBinh T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, t. 45, s. 1558.
  • 27. Ciszewski M., Mianowski A., Badania nad procesem utleniania grafitu mieszaninami utleniającymi w kwasach nieorganicznych. Chemik, 2013, t. 67, nr 4, s. 267.
  • Patent US 2798878.
  • 28. Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T., Ruoff R.S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Material Chemistry, 2006, nr 16, s. 156
  • 29. Wakeland S., Martinez R., Grey J.K., Luhrs C.C., Production of graphene from graphite oxide using urea as expansion-reduction agents. Carbon, 2010, t. 48, s. 3463.
  • 30. Luo D., Zhang G., Liu J., Sun X., Evaluation criteria for reduced graphene oxide. Journal of Physics Chemistry, 2011, nr 115, s. 11327
  • 31. Dai H., Wang H., Robinson J.T., Li X., Solvothermal reduction of chemically exfoliated graphene sheets. Journal of the American Chemical Society, 2009, nr 131, s. 9910.
  • 32. Liu J., Jeong H., Liu J., Lee K, Park J.Y., Ahn Y.H., Lee S., Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon, 2010, t. 48, s. 2282.
  • 33. Cao Y., Feng J., Wu P., Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon, 2010, t. 48, s. 1683.
  • 34. Wang G., Wang B., Park J., Yang J., Shen X., Yao J., Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon, 2009, t. 47, s. 68.
  • 35. Chaltopadhyay J., Mukherjee A., Chakraborty S.,Kang J.H., Loos P.J., Kelly K.F., Schmidt H.K., Billups W.E., Exfoliated soluble graphite. Carbon, 2009, t. 47, s. 2945.
  • 36. Shen J., Li T., Long Y, Shi M, Li N., Ye M., One-step solid state preparation of reduced graphene oxide. Carbon, 2012, t. 50, s. 2134.
  • 37. McAllister M.J., Li, J.-L., Adamson D.H., Schniepp H.C., Abdala A.A., Liu J., Herrera-Alonso M., Milius D.L., Car R., Prud’homme R.K., Aksay A.A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007, nr 19, 4396.
  • 38. Arsat R., Breedon M, Shafiei M., Spizzir iP.G., Gilje S., Kaner R.B., Kalantar-Zadeh K, Wlodarski W., Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters, 2009, nr 467, s. 344.
  • 39. Jung I., Dikin D., Park S., Cai W., Mielke S.L., Ruoff R.S., Effect of water vapour on electrical properties of individual reduced graphene oxide sheets. Journal of Physical Chemistry C, 2008, nr 112, s. 20264.
  • 40. Fowler J.D., Allen M.J., Tung V.C., Yang Y, Kaner R.B., Weiller B.H., Practical chemical sensors from chemically derived graphene. ACS Nano, 2009, nr 3, s. 301.
  • 41. Lu G.H., Ocola L.E., Chen J.H., Gas detection using low-temperature reduced graphene oxide sheets. Applied Physics Letters, 2009, nr 94(8), s. 083111.
  • 42. Robinson J.T., Perkins F.K., Snow E.S., We iZ., Sheehan P.E., Reduced Graphene Oxide Molecular Sensors. Nano Letters, 2008, nr 8, s. 3137.
  • 43. Pacile D., Meyer J.C., Rodriguez A.F., Papagno M., Gomez-Navarro C., Sundaram R.S., Burghard M., Kern K., Carbone C., Kaiser U., Electronic properties and atomic structure of graphene oxide membranes. Carbon, 2011, t. 49, s. 966.
  • 44. Sheng K, Xu Y., Li Ch., Shi G., High-performanceself-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Materials, 2011, t. 26, s. 9.
  • 45. Patent US 2009/0169467.
  • 46. Hernandez Y, Nicolosi V, Lotya M., Blighe F.M., Sun Z., De S., McGovern I.T., Holland B., Byrne M., Gun’Ko Y.K., Boland J.J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V, Ferrari A.C., Coleman J., High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology, 2008, nr 3, s. 563.
  • 47. Liu Ch., Hu G., Gao H., Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide. Journal of Supercritical Fluids, 2012, nr 66, s. 99.
  • 48. Wajid A.S., Das S., Irin F., Ahmed H.S.T., Shelburne J.L., Parviz D., Fullerton R.J., Jankowski A.F., Hedden R.C., Greek M.J., Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon, 2012, t. 50, s. 526.
  • 49. Dhakate S.R., Chauhan N., Sharma S., Tawale J., Singh S., Sahare P.D., Mathur R.B., An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon, 2011, t. 49, s. 1946.
  • 50. Oh S.Y., Kim S.H., Chi Y.S., Kang T.J., Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment. Applied Surface Science, 2012, nr 258, s. 8837.
  • 51. Guardia L., Fernandez-Merino M.J., Paredes J.I., Solis-FernandezP, Villar-Rodil S., Martinez-Alonso A., Tascon J.M.D., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon, 2011, t. 49, s. 1653.
  • 52. Kakaei K, One-pot electrochemical synthesis of graphene by the exfoliation of graphite powder in sodium dodecyl sulfate and its decoration with platinum nanoparticles for methanol oxidation. Carbon, 2013, t. 51, s. 195.
  • 53. Yang H., Hernandez Y., Schlierf A., Felten A., Eckmann A., Johal S., Louette P.,Pireaux J.-J., Feng X., Muellen K, Palermo V., Casiraghi C., A simple method for graphene production based on exfoliation of graphite in water using 1 -pyrenesulfonic acid sodium salt. Carbon, 2013, t. 51, s. 357.
  • 54. Bourlinos A.B., Georgakilas V., Zboril R., Steriotis T.A., Stubos A.K., Trapalis Ch., Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Communications, 2009, nr 149, s. 2172.
  • 55. Lai L., Chen L., Zhan D., Sun L., Liu J., Lim H.S., Poh K.C., Shen Z., Lin J., One-step synthesis of NH<sub>2</sub>-graphene from in situ graphene - oxide reduction and its improved electrochemical properties. Carbon, 2011, t. 49, s. 3250.
  • 56. Hu H., Zhao Z., Zhau Q., Gogotis Y, Qiu J., The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 2012, t. 50, s. 3267.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c1987423-0486-4bfa-a9e2-87bda73cef01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.