Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 4 | 111--118
Tytuł artykułu

The Potential of Floating Treatment Wetlands for Pollutant Removal in the Recirculating Aquaculture System of Catfish

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Floating treatment wetland (FTW) as a wastewater processing technology in recirculating aquaculture systems (RAS) of catfish is considered to be effective in eliminating the pollutant load of nitrogen, phosphorous, and organic matter. This research aims to reduce the concentration of pollutant loads and obtain an effective ratio between the volume of the FTW and the total water volume of the catfish RAS. The FTW system uses Vetiveria zizanoides grown on floating media and equipped with an aerator in the bottom layer of the pond. Several FTW volume ratios were used to determine an FTW system that is effective in reducing pollutant loads according to the mass balance concept. This approach was conducted to maintain acceptable water quality in catfish cultivation ponds. The study results showed that most pollutant load concentrations decreased in all ponds. The largest removal percentage included the parameters TAN, COD, TSS, TP, nitrate, phosphate, and TN, namely 88.54%, 66.17%, 85.68%, 91.30%, 83.85%, 61.46%, and 44.68%, respectively. The effective ratio between the volume of the FTW processing system and the total water volume of 0.543 with an age group of fish of 9–12 weeks was able to eliminate the pollutant loads from catfish pond wastewater.
Wydawca

Rocznik
Strony
111--118
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Aquatic Resources Management, Water Resources Management Department, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Indonesia
  • Research Centre for Limnology and Water Research, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Indonesia
  • Aquatic Resources Management, Water Resources Management Department, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Indonesia, niken_tmpratiwi@apps.ipb.ac.id
  • Aquatic Resources Management, Water Resources Management Department, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Indonesia, majariana.krisanti@apps.ipb.ac.id
  • Research Centre for Limnology and Water Research, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Indonesia, tjan001@brin.go.id
autor
  • Research Centre for Limnology and Water Research, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Indonesia, evis001@brin.go.id
Bibliografia
  • 1. Chance LMG, Brunt SC Van, Majsztrik JC, White SA. 2019. Short- and long-term dynamics of nutrient removal in floating treatment wetlands. Water Res. 159:153–163. doi:10.1016/j.watres.2019.05.012.
  • 2. Chyan JM, Lin CJ, Lin YC, Chou YA. 2016. Improving removal performance of pollutants by artificial aeration and flow rectification in free water surface constructed wetland. Int Biodeterior Biodegrad. 113:146–154. doi:10.1016/j.ibiod.2016.04.034.
  • 3. Colares GS, Dell’Osbel N, Wiesel PG, Oliveira GA, Lemos PHZ, da Silva FP, Lutterbeck CA, Kist LT, Machado ÊL. 2020. Floating treatment wetlands: A review and bibliometric analysis. Sci Total Environ. 714:136776. doi:10.1016/j.scitotenv.2020.136776.
  • 4. Colt J. 2006. Water quality requirements for reuse systems. Aquac Eng. 34(3):143–156. doi:10.1016/j. aquaeng.2005.08.011.
  • 5. Craig S, Kuhn DD. 2017. Fish Feed. Virginia Coop Ext. 420–256 Unesco 2015:420–256.
  • 6. Effendi H, Margaretha JA, Krisanti M. 2018. Reducing ammonia and chromium concentration in batik wastewater by vetiver (Chrysopogon zizanioides L.) grown in floating wetland. Appl Ecol Environ Res. 16(3):2947–2956. doi:10.15666/ aeer/1603_29472956.
  • 7. Emerson K, Russo RC, Lund RE, Thurston R V. 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Board Canada. 32(12):2379–2383. doi:10.1139/f75-274.
  • 8. Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM. 2007. Ammonium and nitrate uptake by the floating plant Landoltia punctata. Ann Bot. 99(2):365–370. doi:10.1093/aob/mcl264.
  • 9. Garnett TP, Shabala SN, Smethurst PJ, Newman IA. 2003. Kinetics of ammonium and nitrate uptake by eucalypt roots and associated proton fluxes measured using ion-selective microelectrodes. Funct Plant Biol. 30(11):1165–1176. doi:10.1071/ FP03087.
  • 10. Grosshans R, Lewtas K, Gunn G, Stanley M. 2019. Floating treatment wetlands and plant bioremediation: nutrient treatment in eutrophic freshwater lakes. Int Inst Sustain Dev.(1):1–37.
  • 11. Jörgensen SE, R.A. Vollenweider. 1988. Guidelines of Lake Management: Vol. 1 Principles of Lake Management. Rep 1:193.
  • 12. Kadlec RH, Wallace S. 2008. Treatment Wetlands Second Edition. Second. London: CRC Press.
  • 13. Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. 2021. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biofilm, and substrate). J Environ Manage. 283 January:111986. doi:10.1016/j. jenvman.2021.111986.
  • 14. Li H, Cui Z, Cui H, Bai Y, Yin Z, Qu K. 2023. Hazardous substances and their removal in recirculating aquaculture system: A review. J. Aquaculture 569: 739399. https://doi.org/10.1016/j. aquaculture.2023.739399.
  • 15. Lin YF, Jing SR, Lee DY. 2003. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. J. Environmental Pollution 123(1):107-113. https://doi.org/10.1016/ S0269-7491(02)00338-X.
  • 16. Lincoln T, Zeiger E. 2002. Plant Physiology. 3rd ed. Volume 34th. doi: 10.1093/aob/mcg079
  • 17. Masters B. 2012. The ability of vegetated floating Islands to improve water quality in natural and constructed wetlands: A review. Water Pract Technol. 7(1). doi:10.2166/wpt.2012.022.
  • 18. Montoya R, Velasco M. 2000. Role of bacteria on nutritional and management strategies in aquaculture systems. Glob Aquac Alliance- Advocate. April:35–36.
  • 19. Price CS, Morris JA. 2013. Marine cage culture and the environment: Twenty-first-century science informing a sustainable industry. Mar Finfish Aquac Environ.
  • 20. Rahmawan AJ, Effendi H, Suprihatin S. 2019. Potensi rumput vetiver (Chrysopongon zizanoides L.) dan kangkung (Ipomoea aquatica Forsk.) sebagai agen fitoremediasi limbah industri kayu. Journal Nat Resour Environ Manag. 9(4):904–919. doi:10.29244/jpsl.9.4.904-919.
  • 21. Satya A, Chrismadha T, Sulawesty F, Yoga GP, Mardiyati Y. 2014. Penyisihan nutrien dengan kultur Eichornia crassipes dalam air limbah kolam ikan resirkulasi semi tertutup pendahuluan. 2014(2):157–167.
  • 22. Singh V, Thakur L, Mondal P. 2014. Removal of lead and chromium from synthetic wastewater using vetiveria zizanioides. Clean - Soil, Air, Water. 43(4):538–543. doi:10.1002/clen.201300578.
  • 23. Somprasert S, Mungkung S, Kreetachat N, Imman S, Homklin S. 2021. Implementation of an integrated floating wetland and biofilter for water treatment in Nile tilapia aquaculture. J Ecol Eng. 22(8):146–152. doi:10.12911/22998993/140267.
  • 24. Susanti E, Wulandari S, Henny C, Melati I. 2019. Pengolahan air limbah budidaya berbasis IMTA ( integrated multi trophic aquaculture ) menggunakan constructed treatment wetland – surface flow system. Pros Pertem Ilm Tah Ke-1V MLI 2019.
  • 25. Syah R, Fahrur M, Suwoyo HS, Makmur M. 2017. Performance of intensive shrimp pond wastewater treatment plant. Media Akuakultur. 12(2):95. http:// ejournal-balitbang.kkp.go.id/index.php/ma/article/ view/6140.
  • 26. Tchobanoglous G, L. Burton F, Stensel DH. 2004. Metcalf & Eddy: Wastewater Engineering: Treatment and Reuse. McGraw Hill Companies, Inc.(7):421.
  • 27. Timmons MB, Ebeling J, Wheaton F, Summerfelt S, B. Vinci. 2002. Mass Balances, Loading Rates, and Fish Growth.
  • 28. Torres AP, Mickelbart M V., Lopez RG. 2010. Leachate volume effects on pH and electrical conductivity measurements in containers obtained using the pour-through method. Horttechnology. 20(3):608–611. doi:10.21273/horttech.20.3.608.
  • 29. Truong P, Carlin G, Cook F, Thomas E. 1996. Vetiver grass hedges for water quality improvement in acid sulfate soils, Queensland, Australia.
  • 30. Trussel R. 1972. The percent un-ionized ammonia in aqueous ammonia solutions at different pH levels and temperatures un-ionized ammonia. J Fish Res Board Canada, 29(10), 1972(4):1505–1507. doi: 10.11.1139/f72-236
  • 31. Turcios AE, Papenbrock J. 2014. Sustainable treatment of aquaculture effluents- What can we learn from the past for the future? Sustain. 6(2):836–856. doi:10.3390/su6020836.
  • 32. Vymazal J. 2010. Constructed wetlands for wastewater treatment. Water (Switzerland). 2(3):530549. doi:10.3390/w2030530.
  • 33. Wang W, Yang H, Wang X, Jiang J, Zhu W. 2010. Factors affecting aluminum speciation in drinking water by laboratory research. J Environ Sci. 22(1):47–55. doi:10.1016/S1001-0742(09)60073-5.
  • 34. White SA, Cousins MM. 2013. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecol Eng. 61:207–215. doi:10.1016/j.ecoleng.2013.09.020.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c19367b7-92f0-46de-b85e-3a291f7ad52f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.