Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | z. 71 | 3--113
Tytuł artykułu

Struktura zbiorowisk mikroorganizmów w osadzie czynnym oczyszczalni z podwyższonym usuwaniem biogenów

Autorzy
Warianty tytułu
EN
Microbial community structure in activated sludge of wastewater treatment plants with enhanced nutrients removal
Języki publikacji
PL
Abstrakty
PL
W pracy zbadano wpływ warunków oczyszczania ścieków osadem czynnym na bioróżnorodność mikroorganizmów odpowiedzialnych za usuwanie azotu i fosforu. Badania prowadzono w pełnoskalowych oczyszczalniach ścieków z podwyższonym usuwaniem biogenów, różniących się konfiguracją reaktorów, głównymi parametrami chemicznymi i technologicznymi. Strukturę populacji bakterii określano metodami biologii molekularnej - qFISH (quantitative Fluorescence In Situ Hybridization) raz PCR (Polymerase Chain Reaction). W celu oceny zależności pomiędzy składem chemicznym ścieków i parametrami technologicznymi a zawartością mikroorganizmów w osadzie czynnym zastosowano badania korelacji rho Spearmana. Różnice pomiędzy poszczególnymi oczyszczalniami weryfikowano z użyciem statystyk opisowych. Najliczniej występującym typem bakterii w osadzie czynnym badanych oczyszczalni ścieków były Proteobacteria, pośród których największy udział miała klasa Betaproteobacteria. Wysoką liczebność osiągały również mikroorganizmy z typów Acnobacteria i Chloroflexi. Ważną grupę w osadzie czynnym stanowiły mikroorganizmy nitkowate, glównie typ Chloroflexi, Haliscomenobacter hydrossis i Microchrix spp. Najliczniejszą grupą bakterii pośród mikroorganizmów akumulujących fosfor (PAO) w badanych oczyszczalniach był rodzaj Tetrasphaera. Rozwojowi PAO z rodzaju Accumulibacter sprzyjała obecność komory predenitryfikacji oraz fermentera. Niska zawartość PAO z rodzaju Halomonas może wskazywać na niewielkie znaczenie tych bakterii w procesie biologicznego usuwania fosforu w badanych układach. Liczebność mikroorganizmów akumulujących glikogen (Competibacter phosphatis oraz powiązanych z Defluviicoccus vanus) utrzymywała się na ogół na niskim poziomie. Istotną rolę w procesie nitryfikacji pełniły nitryfikatory I fazy Nitrosomonas spp. oraz II fazy Nitrospira spp. Pośród denitryfikatorów najwyższy procentowy udział w osadzie miały Thauera spp., Accumulibacter phosphatis klad IA, Azoarcus sp p. oraz część Competibacter phosphatis. Niska liczebność bakterii z rodzajów Nitrosospira i Nitrobacter oraz Curvibacter i Zoogloea wskazuje na ich niewielkie znaczenie odpowiednio w procesach nitryfikacji oraz denitryfikacji w komunalnych oczyszczalniach ścieków. Zmienną sezonową liczebności stwierdzono tylko u niektórych grup bakterii (test U Manna-Whitneya). Wykazano, że struktura populacji bakterii odpowiedzialnych za usuwanie biogenów w osadzie nie zależy wyłącznie od ogólnych wskaźników zanieczyszczeń organicznych w ściekach takich jak BZT5 i ChZT. Obecność w ściekach określonych frakcji organicznych i nieorganicznych jest jednym z decydujących czynników, kształtujących strukturę populacji bakterii w osadzie czynnym. Udowodniono występowanie istotnych różnic w bioróżnorodności mikroorganizmów pomiędzy oczyszczalniami ze znacznym udziałem ścieków przemysłowych a resztą badanych układów. Z porównania rezultatów uzyskanych w niniejszej pracy z danymi wcześniej opublikowanymi wynika, że osi populacji bakterii w osadzie czynnym układów pełnoskalowych nie należy wnioskować na podstawie wyników eksperymentów prowadzonych w warunkach laboratoryjnych.
EN
The influence of environmental and operating conditions on the biodiversity of microorganisms involved in nitrogen and phosphorus removal was studied. The research was carried out in full-scale municipal wastewater treatment plants (WWTPs) with enhanced nutrients removal that differed in configurations of reactors and main chemical and operating parameters. Methods of molecular biology (Fluorescence In Situ Hybridization - FISH, Polymerase Chain Reaction - PCR) were applied to investigate the microbial community structure. Statistical analysis, using Spearman’s correlation coefficient, was performed to find relationships between quantifled bacteria in activated sludge and chemical and operating conditions. Differences among the WWTPs were verified by descriptive statistics. Proteobacteria was the dominant bacterial phylum with the highest percentage of Betaproteobacteria class. Actinobacteria and Chloroflexi were the other highly abundant phyla. Filamentous bacteria, mainly Chloroflexi, Hal iscomenobacter hydrossis and Microthrix spp., constituted an important microbial group in activated sludge. Tetrasphaera genus were the most abundant bacteria among polyphoshate accumulating organisms (PAOs) in the investigated WWTPs. The presence of a predenitrification tank and a fermenter stimulated the growth of Accumulibacter-PAOs. Low abundance of Halomonas-PAOs implies a minor role of these bacteria in biological phosphorus removal in the investigated WWTPs. Glycogen accumulating organisms (Competibacter phosphatis and Defluviicoccus vanus related GAOs) constituted a relatively low fraction of all detected bacteria. Genera Nitrosomonas and Nitrospira were the key ammonia- and nitrite oxidizing bacteria, respectively. Most detected denitriflers bebonged to Thauera spp., clade IA of Accumulibacter phosphatis, Azoarcus spp. and to some Competibacter phosphatis. Based on the bw abundance of genera Nitrosospira, Nitrobacter and Curvibacter as well as Zoogloea we can infer that these bacteria are not important to nitrification and denitrification processes in municipal wastewater treatment plants, respectively. Seasonal variations in abundance were only confirmed for few bacterial groups, using the Mann-Whitney U test. It was shown that community structure of bacteria involved in nutrients removal does not depend solely on indicators of lumped organic matter in wastewater as BOD, or COD. The presence of diferent fractions of organic and inorganic matter is a more decisive factor in determining the relative proportions of the bacterial groups in activated sludge. Significant differences were presented in biodiversity of microorganisms between WWTPs with substantial contribution of industrial wastewater and the other plants. Comparison of the results from this study with the earlier published data implies that the knowledge on activated sludge community structure, obtained from lab-scale experiments, cannot be extended implicitly to full-scale WWTPs.
Wydawca

Rocznik
Tom
Strony
3--113
Opis fizyczny
Bibliogr. 100 poz., rys., tab., wykr. + CD
Twórcy
  • Wydział Inżynierii Środowiska
Bibliografia
  • 1. Abalos M., Bayona J.M., Pawliszyn J. (2000) Development of a headspace solid-phase mieroextraction procedure for the determination of free volatile fatty acids in waste waters. Journal of Chromatography A, 873: 107-115.
  • 2. Albertsen M., Hansen L.B., Saunders A.M., Nielsen P.H., Nielsen K.L. (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME Journal, 6: 1094-1106.
  • 3. Amann R.L, Ludwig W., Schleifer K.H. (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiological Reviews, 59: 143-1
  • 4. Beer M., Stratton H.M., Griiffiths P.C., Seviour R.J. (2006) Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia? Journal of Applied Microbiology, 100: 233-243.
  • 5. Blackburne R., Vadivelu V.M., Yuan Z.G., Keller J. (2007) Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research, 41: 3033-30
  • 6. Bollmann A., Bar-Gilissen M.J., Laanbroek H.J. (2002) Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68: 4751-4757.
  • 7. Bond P.L., Hugenholtz P., Keller J., Blackall L.L. (1995) Bacterial community structure phosphate removing and non-phosphate removing activated sludges from sequencing batch reactors. Applied and Environmental Microbiology, 61: 1910-1916.
  • 8. Bond P. L., Erhart R., Wagner M., Keller J., Blackall L.L. (1999) Identifikation of some of major groups of bacteria in efficient and nonefficient biological phosphorus removab activated sludge systems. Applied and Environmental Microbiology, 65: 4077-4084.
  • 9. Buchauer K. (1998) A comparison of two simple titration procedures to determine volatile fatty acids in influents to waste-water and sludge treatment processes. Water SA, 24: 49-5
  • 10. Burow L.C., Kong Y.H., Nielsen J.L., Blackall L.L., Nielsen P.H. (2007) Abundance ecophysiology of D. vanus spp., glycogen accumulating organisms in full-scale wastewater treatment processes. Microbiology, 153: 178-185.
  • 11. Carvalho G., Lemos P.C., Oehmen A., Reis M.A.M. (2007) Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Research, 41: 4383-4396.
  • 12. Chen Y., Randall A.A., McCue T. (2004) The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 38: 27-36.
  • 13. Crocetti G.R., Hugenholtz P., Bond P.L., Schuler A., Keller J., Jenkins D., Blackall L. (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA directed probes for their detection and quantitation. Applied and Environmental Microbiology, 66:1175-1182.
  • 14. Crocetti G.R., Banfield J.F., Keller J., Bond P.L., Blackall L.L. (2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology, 148: 3353-3364.
  • 15. Cydzik-Kwiatkowska A., Wojnowska-Baryła I. (2008) The impact of organic carbon and ammonia load in wastewater on ammonia-oxidizing bacteria community in activated sludge Polish Journal of Microbiology, 57: 241-248.
  • 16. Cydzik-Kwiatkowska A., Zielińska M., Wojnowska-Baryła I. (2012) Impact of operational parameters on bacterial community in a full-scale municipal wastewater treatment plant. Polish Journal of Microbiology, 61: 41-49.
  • 17. Dai Y., Yuan Z.G., Wang X.L., Oehmen A., Keller J. (2007) Anaerobic metabolism of D. vanus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources. Water Research, 41: 1885-1896.
  • 18. Daims H., Purkhold U., Bjerrum L., Arnold E., Wilderer P.A., Wagner M. (2001) Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Science Technology, 43: 9-18.
  • 19. Daims H., Wagner M. (2010) The microbiology of nitrogen removal. In: Microbial ecology of activated sludge (Seviour R.J., Nielsen P.H., Eds.), pp. 259-280. IWA Publishing, London.
  • 20. Egli K., Langer C., Siegrist H.-R., Zehnder A.J.B., Wagner M. van der Meer J.R. (2003) Community analysis of ammonia and nitrite oxidizers during start-up of nitrification reactors. Applied and Environmental Microbiology, 69: 3213-3222.
  • 21. Elefsiniotis P., Wareham D.G., Smith M.O. (2004) Use of volatile fatty acids from an acid-phase digester for denitrification. Journal of Biotechnology, 114: 289-297.
  • 22. Flowers J.J., He S., Yilmaz S., Noguera D.R., McMahon K.D. (2009) Denitrification capabilities of two biological phosphorus removal sludges dominated by different "Candidatus Accumulibacter" clades. Environmental microbiology reports, 1: 583-588.
  • 23. Fuhs G.W., Chen M. (1975) Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecology, 2: 119-138.
  • 24. Gebremariam S.Y., Beutel MM., Christian D., Hess T.F. (2011) Research advances and challenges in the microbiology of enhanced biological phosphorus removal - a critical review. Water Environment Research, 83: 195-219.
  • 25. Ginige M.P., Hugenholtz P., Daims H., Wagner M., Keller J., Blackall L.L. (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Applied and Environmental Microbiology, 70: 588-596.
  • 26. Gu A.Z., Saunders A., Neethling J.B., Stensel H.D., Blackall L.L. (2008) Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States. Water Environment Research, 80: 688-698.
  • 27. Hagman M., Nielsen J.L., Nielsen P.H., Jansen J.L. (2008) Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Research, 42: 1539-1546.
  • 28. Hallin S., Lydmark P., Kokalj S., Hermansson M., Sörensson F., Jarvis A., Lindgren P.E. (2005) Community survey of ammonia-oxidizing bacteria in full-scale activated sludge processes with different sobids retention time. Journal of Applied Microbiology, 99: 629-640.
  • 29. He S., Gall D.L., McMahon K.D. (2007) "Candidatus Accumulibacter" population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Applied and Environmental Microbiology 73: 5865-5874.
  • 30. He S., Gu A.Z., McMahon K.D. (2008) Progress toward understanding the distribution of Accumulibacter amoung full-scale enhanced biological phosphorus removal systems. Microbial Ecology, 55: 229-236.
  • 31. He S., McMahon K. (2011) Microbiology of "Candidatus Accumulibacter" in activated sludge. Microbial Biotechnology, 4: 603-619.
  • 32. Hesselmann R.P.X., Werlen C., Hahn D., van der Meer J.R., Zehnder A.J.B. (1999) Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Systematic and Applied Microbiology, 22:454-465.
  • 33. Hvitved-Jacobsen T., Raunkjr K., Nielsen P.H. (1995) Volatile fatty acids and sulfide in pressure mains. Water Science and Technology, 31: 169-179.
  • 34. Juretschko S., Timmermann G., Schmid M., Schieifer K.H., Pommerening-Roser A., Koops H.P., Wagner M. (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology, 64: 3042-3051.
  • 35. Juretschko S., Loy A., Lehner A., Wagner M. (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approarch. Systematic and Applied Microbiology 25: 84-99
  • 36. Kim Y.M., Park H., Cho K.H., Park J.M. (2013) Long term assessment of factors affecting nitrifying bacteria communities and N-removal in a full-scale biological process treating high strength hazardous wastewater. Bioresource Technology, 134: 180-189.
  • 37. Kong Y., Nielsen J.L., Nielsen P.H. (2004) Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Applied and Environmental Microbiology, 70: 5383-5390.
  • 38. Kong Y.H., Nielsen J.L., Nielsen P.H. (2005) Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Applied and Environmental Microbiology, 71: 4076-4085.
  • 39. KongY.H., Xia Y., Nielsen J.L., Nielsen P.H. (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology, 153: 4061-4073.
  • 40. Kowalchuk G.A., Stephen J.R. (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55: 485-529.
  • 41. Kristiansen R., Nguyen H.T., Saunders A.M., Nielsen J.L., Wimmer R., Le V.Q., Mcllroy S.J., Petrovski S., Seviour R.J., Calteau A., Nielsen K.L., Nielsen P.H. (2013) A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME Journal, 7: 543-554.
  • 42. Lie E., Welander T. (1997) Method for determination of the readily fermentable organic fraction in municipal wastewater. Water Research, 31: 1269-127
  • 43. López-Vazquez C.M., Hooijmans C.M., Brdjanovic D., Gijzen H.J., Van Loosdrecht M.C.M. (2008) Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands, Water Research, 40: 3838-3848.
  • 44. Loy A., Horn M., Wagner M. (2003) ProbeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Research, 31: 514-516.
  • 45. Lu H., Oehmen A., Virdis B., Keller J., Yuan Z.G. (2006) Obtaining highly enriched cultures of Candidatus Accumulibacter phosphatis through alternating carbon sources. Water Research, 40: 3838-3848.
  • 46. Lydmark P., Almstrand R., Samuelsson K., Mattsson A., Sörensson F., Lindgren P.E., Hermansson M. (2007) Effects of environmental condition on the nitrifying population dynamics in a pilot wastewater treatment plant. Environmental Microbiology, 9: 2220-2233.
  • 47. Maixner F., Noguera D.R., Anneser B., Stoecker K., WegI G., Wagner M., Daims H. (2006) Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environmental Microbiology, 8: 1487-1495.
  • 48. Martin H.G., Ivanova N., Kunin V., Warnecke F., Barry K., Mchardy A.C., Yeates C., He S., Salamov A., Szeto E., Dalin E., Putnam N., Shapiro H.J., Pangilinan J.L., Rigoutsos I., Kyrpides N.C., Blackall L.L., Mcmahon K.D., Hugenholtz P. (2006): Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nature Biotechnology. 24: 1263-1269.
  • 49. MaszenanA.M., Seviour R.J., Patel B.K., Schumann P., Burghardt J., Webb R.I., Soddell J.A., Rees G.N. (1999) Friedmanniella spumicola sp. nov. and Friedmanniella capsulata sp. nov. from Activated Sludge Foam: Gram-Positive Cocci that Grow in Aggregates of Repeating Groups of Cocci. International Journal of Systematic Bacteriology, 49: 1667-1680.
  • 50. Maszenan A.M., Seviour R.J., Patel B.K.C., Schumann P. (2002) Quadricoccus australiensis gen. nov., sp. nov., a β-Proteobacterium from Activated Sludge Biomass. International Journal of Systematic and Evolutionary Microbiology, 52: 223-228.
  • 51. McIlroy S., Seviour R.J. (2009) Elucidating further phylogenetic diversity among the D. vanus-related glycogen accumulating organisms in activated sludge. Environmental microbiology reports, 1: 563-568.
  • 52. McIlroy S.J., Nittami T., Seviour E.M., Seviour R.J. (2010) Filamentous members of cluster III D. vanus have the in situ phenotype expected ofa glycogen accumulating organism in activated sludge. FEMS Microbiology Ecology, 74: 248-256.
  • 53. McMahon K., He S., Oehmen A. (2010) The microbiology of phosphorus removal. In: Microbial ecology of activated sludge (Seviour R.J., Nielsen P.H., Eds.), pp. 281-320. IWA Publishing, London.
  • 54. Meyer R.L., Saunders A.M., Blackail L.L. (2006) Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing. Microbiology, 152: 419-429.
  • 55. Mielczarek A.T., Nguyen H.T., Nielsen J.L., Nielsen P.H. (2013) Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants. Water Research, 47: 1529-1544.
  • 56. Miłobędzka A., Muszyński A. (2014) Identyfikacja bakterii nitkowatych odpowiedzialnych za pienienie osadu czynnego metodą fluorescencyjnej hybrydyzacji in situ. W: Podstawy Biotechnologii Srodowiskowej - trendy, badania, implementacje (Praca zbiorowa pod redakcją dr. Grzegorza Cemy), pp. 27-32, Politechnika Śląska, Gliwice.
  • 57. Miłobędzka A., Muszyński A. (2015) Population dynamics of filamentous bacteria identified in Polish full-scale wastewater treatment plants with nutrients removal. Water Science and Technology, 71(5): 675-684.
  • 58. Mino T., Van Loosdrecht M.C.M., Heijnen J.J. (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research 32: 3193-3207.
  • 59. Morgan-Sagastume F., Nielsen J.L., Nielsen P.H. (2008) Substrate-dependent denitrification of abundant probedefined denitrifying bacteria in activated sludge. FEMS Microbiology Ecology, 66: 447-461.
  • 60. Muszyński A., Łebkowska M., Tabernacka A., Miłobędzka A. (2013) From macro to labscale: Changes in bacterial community led to deterioration of EBPR in lab reactor. Central European Journal of Biology, 8: 130-142.
  • 61. Muszyńskj A. (2014) Accumulibacter, Tetrasphaera-related bacteria or Halomonas phosphatir? The most abundant PAOs in Polish full-scale nutrients removal systems. Proceedings of the IWA Conference "Activated Sludge ... 100 Years and Counting!", Essen, Germany.
  • 62. Muszyński A., Tabernacka A., Miłobędzka A. (2015) Long-Term Dynamics of the Microbial Community in a Full-Scale Wastewater Treatment Plant. International Biodeterioration&Biodegradation, 100: 44-51.
  • 63. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamagata Y. (1995) Microlunatus phosphovorus gen-nov, sp-nov, a new Gram-positive polyphosphate-accumulating bacterium isolated from activated-sludge. International Journal of Systematic Bacteriology, 45: 17-22.
  • 64. Narkis N., Henfeld-Furie S. (1978) Direct analytical procedure for determination of volatile organic acids in raw municipal wastewater. Water Research, 12: 437-446.
  • 65. Narkis N., Henefeld-Fourrier S., Rebhun M. (1980) Volatile organic acids in raw wastewater and in physico-chemical treatment. Water Research, 14: 1215-1223.
  • 66. Nguyen H.T., Le V.Q., Hansen A.A., Nielsen J.L., Nielsen P.H. (2011) High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiology Ecology, 76: 256-267.
  • 67. Nguyen H.T., Nielsen J.L., Nielsen P.H. (2012) "Candidatus Halomonas phosphatis", a novel Polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants. Environmental Microbiology, 14: 2826-2837.
  • 68. Nielsen A.T., Liu W.-T., Filipa C., Grady L., Molin M., Stahl D.A. (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor Applied and Environmental Microbiology, 65: 1251-1258.
  • 69. Nielsen J.L., Nielsen P.H. (2002) Enumeration of acetate-consuming bacteria by microauto-radiography under oxygen and nitrate respiring conditions in activated sludge. Water Research, 36: 421-428.
  • 70. Nielsen P.H., Raunkjaer K., Norsker N.H., Jensen N.A., Hvitved-Jacobsen T. (1992) Transformation of wastewater in sewer systems - a review. Water Science and Technology, 25: 17-31
  • 71. Nielsen P.H., Kragelund C., Seviour R.J., Nielsen J.L. (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiology Reviews, 33: 969-998.
  • 72. Nielsen P.H., Mielczarek A.T., Kragelund C., Nielsen J.L., Saunders A.M., Kong Y., Hanser A.A., Vollertsen J. (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Research, 44: 5070-5088.
  • 73. Nielsen P.H., Saunders A.M., Hansen A.A., Larsen P., Nielsen J.L. (2012) Microbial communities involved in enhanced biological phosphorus removal from wastewater - a model system in Environmental biotechnology. Current Opinion in Biotechnology 23: 452-459.
  • 74. Nittami T., McIlroy S., Seviour E.M., Schroeder S., Seviour R.J. (2009) Candidatus Monili bacter spp., common bulking fllaments in activated sludge, are members of Cluster III D. va nus. Systematic and Applied Microbiology, 32: 480-489.
  • 75. Nogueira R., Melo L.F. (2006) Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnology and Bioengineering, 95: 169-175.
  • 76. Oehmen A., Saunders A.M., Vives M.T., Yuan Z., Keller J. (2006) Competition betweer polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology, 123: 22-32
  • 77. Oehmen A., Lemos P.C., Carvalho G., Yuan Z., Keller J., Blackail L.L., Reis M.A.M. (2007; Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Research 41:2271-2300.
  • 78. Okabe S., Satoh H., Watanabe Y. (1999) In situ analysis of nitrifying biofilms as determinec by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology, 65: 3182-3191.
  • 79. Purkhold U., Pommering-Röser A., Juretschko S., Schmid M.C., Koops H.-P., Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied am Environmental Microbiology, 66: 5368-5382.
  • 80. Rosselló-Mora R.A., Wagner M., Amann R., Schleifer K.-H. (1995) The abundance of Zoogloea ramigera in sewage treatment plants. Applied and Environmental Microbiology, 61 702-707.
  • 81. Raunkjr K., Hvitved-Jacobsen T., Nielsen P.H. (1994) Measurement of pools of protein carbohydrate and lipid in domestic wastewater. Water Research 28: 251-262.
  • 82. Santos M.M., Lemos P.C., Reis M.A.M., Santos H. (1999): Glucose metabolism and kinetic of phosphorus removal by the fermentative bacterium Microlunatus phosphoyorus. Applied and Environmental Microbiology, 65: 3920-3928.
  • 83. Satoh H., Yamakawa T., Kindaichi T., Ito T., Okabe S. (2006) Community structures am activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms Biotechnology and Bioengineering, 94: 762-772.
  • 84. Saunders A.M., Oehmen A., Blackall L.L., Yuan Z., Keller J. (2003) The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants. Water Science and Technology, 47: 37-43.
  • 85. Schmid M., Thill A., Purkhold U., Waicher M., Bottero J.Y., Ginestet P., Nielsen P.H., Wuertz S., Wagner M. (2003) Characterization of activated sludge floes by confocal laser scanning micropscopy and image analysis. Water Research 37: 2043-2052.
  • 86. Seviour E.M., Williams C.J., Seviour R.J., Soddell J.A., Lindrea K.C. (1990) A survey of filamentous bacterial populations from foaming activated sludge plants in eastern states of Australia. Water Research, 24: 493-498.
  • 87. Seviour R.J., Mino T., Onuki M. (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews, 27: 99-127.
  • 88. Seviour R.J., McIlroy S. (2008) The Microbiology of Phosphorus Removal in Activated Sludge Processes - The Current State of Play. Journal of Microbiology, 46: 115-124.
  • 89. Silva A.F., Carvalho G., Oehmen A., Lousada-Ferreira M., van Nieuwenhuijzen A., Reis M.A., Crespo M.T. (2012) Microbial population analysis of nutrient removal-related organisms in membrane bioreactors. Applied Microbiology and Biotechnology, 93: 2171-2180.
  • 90. Srinath E.G., Sastry C.A., Pillai S.C. (1959) Rapid removal of phosphorus from sewage by activated sludge. Experientia, 15: 339.
  • 91. Stante L., Cellamare C.M., Malaspina F., Bortone G., Tilche A. (1997) Biological phosphorus removal by pure culture of Lampropedia spp. Water Research, 31: 1317-1324.
  • 92. Thomsen T.R., Nielsen J.L., Ramsing N.B., Nielsen P.H. (2004) Micromanipulation and further identification of FISH-labelled microcolonies of a dominant denitrifying bacterium in activated sludge. Environmental Microbiology, 6: 470-479.
  • 93. Thomsen T.R., Kong Y., Nielsen P.H. (2007) Ecophysiology of abundant denitrifying bacteria in activated sludge. FEMS Microbiology Ecology, 60: 370-382.
  • 94. Vollertsen J., Petersen G., Borregaard V.R. (2006) Hydrolysis and fermentation of activated sludge to enhance biological phosphorus removal. Water Science and Technology, 53: 55-64.
  • 95. Wagner M., Erhar R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer, K.H. (1994) Development of a ribosomal-RNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in-situ monitoring in activated-sludge. Applied and Environmental Microbiology, 60: 792-800.
  • 96. Wagner M., Rath G., Koops H.P., Flood J., Amann R. (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Water Science and Technology, 34: 237-244.
  • 97. Wojnowska-Baryła I., Cydzik-Kwiatkowska A., Zielińska M. (2010). The application of molecular techniques to the study of wastewater treatment systems, in: Bioremediation: Methods and Protocols, Methods in Molecular Biology. Vol. 599, pp. 157-183, Humana Press.
  • 98. Wong M.-T., Tan F.M., Ng W.J., Liu W.-T. (2004) Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes. Microbiology, 150: 3741-3748.
  • 99. Wong M.-T., Mino T., Seviour R.J., Onuki M., Liu W.-T. (2005) In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorus removal plants in Japan. Water Research, 39: 2901-2914.
  • 100. Zborowska E., Muszyński A., Łebkowska M., Podedworna J., Żubrowska-Sudoł M. (2010) Badania składu jakościowego bakterii występujących w osadzie czynnym akumulującym polifosforany. Ochrona Środowiska, 32: 9-14.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c18b83a9-ead9-42f6-aca7-5459ff5a2e6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.