Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | R. 26, nr 4 | 264--278
Tytuł artykułu

Wpływ temperatury na długoterminowe właściwości zapraw zawierających odpadowe szkło i mielony granulowany żużel wielkopiecowy

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Effect of temperature on the long-term properties of mortars containing waste glass powder and ground granulated blast furnace slag
Języki publikacji
PL EN
Abstrakty
PL
W artykule przedstawiono wyniki dwuletnich badań właściwości zapraw zawierających mielone szkło, którym zastąpiono 15 lub 30% mas cementu. Zaprawy ze szkłem porównano z analogicznymi zaprawami z dodatkiem granulowanego żużla wielkopiecowego, które dojrzewały w różnych temperaturach. Ponadto, po dwuletnim okresie dojrzewania zaprawy poddano autoklawizacji. Zmierzono wytrzymałość na ściskanie próbek, a w części z nich wykonano analizy rentgenograficzne oraz oznaczono zawartość wodorotlenku wapnia, metodą termograwimetryczną. Wyniki potwierdzają, że dodatek mielonego szkła, jako substytutu cementu, może zastąpić granulowany żużel wielkopiecowy. Ponadto nie stwierdzono spadku wytrzymałości, po procesie autoklawizacji dla zapraw z 15% dodatkiem szkła. Dane zebrane w pracy potwierdzają, że właściwości pucolanowe mielonego szkła pozwalają na jego zastosowanie do częściowej substytucji cementu. Badania pokazują również zdolność zapraw, z dodatkiem mielonego szkła, do utrzymywania stałego poziomu wytrzymałości w długim okresie, a nawet po autoklawizacji próbek dwuletnich.
EN
The paper presents new and unique results of two-year examinations of mortars containing ground glass, as a substitute for 15 or 30% by mass of ordinary Portland cement in comparison with the properties of mortars with the analogous addition of ground granulated blast furnace slag, in different temperatures. Moreover, after a two-year curing period, the mortars were autoclaved. Samples were subjected to compressive strength measurements, XRD analysis and the determination of calcium hydroxide content, by means of thermogravimetric analysis. The results confirm that as an additive, glass powder, thanks to its pozzolanic properties, can compete with common SCMs like granulated blast furnace slag. Additionally, a reduction in strength was not observed after the autoclaving process, for the mortars with 15% glass addition. The data collected in the paper confirms that the pozzolanic properties of ground glass allows its use as an additive. It also shows the ability of these mortars to maintain a constant level of strength in the long term and even after the autoclaving of two-year-old samples.
Wydawca

Czasopismo
Rocznik
Strony
264--278
Opis fizyczny
Bibliogr. 52 poz., il., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Building Materials Technology
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Building Materials Technology
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Building Materials Technology, golek@agh.edu.pl
Bibliografia
  • 1. A. Mehta, D.K. Ashish, Silica fume and waste glass in cement concrete production: A review. J. Build. Eng., 29 (2020). 100888. https://doi.org/10.1016/j.jobe.2019.100888.
  • 2. 2020 cement production in numbers. Bulletin of Polish Cement Assiciation, 2020.
  • 3. M.C.G. Juenger, R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 78, 71-80 (2015). https://doi.org/10.1016/j.cemconres.2015.03.018.
  • 4. Ł. Kotwica, M. Chorembała, E. Kapeluszna, P. Stępień, J. Deja, M. Illikainen, Ł. Gołek, Influence of Calcined Mine Tailings on the Properties of Alkali Activated Slag Mortars. Key Eng. Mater. 761, 83-86 (2018). https://doi.org/10.4028/www.scientific.net/KEM.761.83.
  • 5. Ł. Gołek, Ł. Kotwica, M. Chorembała, E. Kapeluszna, P. Stępień, J. Deja, M. Illikainen, Effect of metakaolinite on properties of alkali activated slag materials. Key Eng. Mater. 761, 69-72 (2018).
  • 6. ArcelorMittal Poland na stałe zamknie część surowcową krakowskiej huty, (n.d.). https://poland.arcelormittal.com/media/artykul/news/arcelormittal-poland-na-stale-zamknie-czesc-surowcowa-krakowskiej-huty/ (accessed December 13, 2020).
  • 7. P. Shoaei, F. Ameri, H. Reza Musaeei, T. Ghasemi, C.B. Cheah, Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study. Constr. Build. Mater. 251, 118991, (2020). https://doi.org/10.1016/j.conbuildmat.2020.118991.
  • 8. J. Kim, J.H. Moon, J.W. Shim, J. Sim, H.G. Lee, G. Zi, Durability properties of a concrete with waste glass sludge exposed to freeze-and-thaw condition and de-icing salt, Constr. Build. Mater. 66, 398-402 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.081.
  • 9. Y. Shao, T. Lefort, S. Moras, D. Rodriguez, Studies on concrete containing ground waste glass. Cem. Concr. Res. 30, 91-100 (2000). https://doi.org/10.1016/S0008-8846(99)00213-6.
  • 10. Ł. Kołodziej, J. Deja, Ł. Gołek, Application of glass cullet in binder production. Cem. Wapno Beton 16(6), 349-354 (2011).
  • 11. N.A. Soliman, A. Tagnit-Hamou, Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap, Constr. Build. Mater. 139, 374-383 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.084.
  • 12. S.A. Zareei, F. Ameri, P. Shoaei, N. Bahrami, Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study. Constr. Build. Mater. 201, 11-32 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.161.
  • 13. G.M.S. Islam, M.H. Rahman, N. Kazi, Waste glass powder as partial replacement of cement for sustainable concrete practice. Int. J. Sustain. Built Environ. 6, 37-44 (2017). https://doi.org/10.1016/j.ijsbe.2016.10.005.
  • 14. Ł. Gołek, W. Szudek, M. Błądek, M. Cięciwa, The influence of ground waste glass cullet addition on the compressive strength and microstructure of Portland cement pastes and mortars, Cem. Wapno Beton 25(6), 480-494 (2020). https://doi.org/10.32047/CWB.2020.25.6.5.
  • 15. J. Cercel, A. Adesina, S. Das, Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder. Constr. Build. Mater. 270, 121457 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121457.
  • 16. Ł. Gołek, J. Deja, M. Sitarz, The role of aluminium ions during the slag activation process. Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B; Phys. Chem. Glas., 55, no. 2, 111-117 (2014).
  • 17. Introduction - User Guidelines for Waste and Byproduct Materials in Pavement Construction - FHWA-RD-97-148, (n.d.). https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/intro.cfm (accessed December 13, 2020).
  • 18. T. Ichikawa, M. Miura, Modified model of alkali-silica reaction. Cem. Concr. Res. 37, 1291-1297 (2007). https://doi.org/10.1016/j.cemconres. 2007.06.008.
  • 19. M.N.N. Khan, A.K. Saha, P.K. Sarker, Evaluation of the ASR of waste glass fine aggregate in alkali activated concrete by concrete prism tests. Constr. Build. Mater. 266 (2021). 121121. https://doi.org/10.1016/j.conbuildmat. 2020.121121.
  • 20. Z. Wang, C. Shi, J. Song, Effect of glass powder on chloride ion transport and alkali-aggregate reaction expansion of lightweight aggregate concreteitle. J. Wuhan Univ. Technol. Sci. Ed. 24, 312-317 (2009). https://doi.org/https://doi.org/10.1007/s11595-009-2312-0.
  • 21. A. Saccani, M.C. Bignozzi, ASR expansion behavior of recycled glass fine aggregates in concrete, Cem. Concr. Res., 40, 531-536 (2010). https://doi.org/10.1016/j.cemconres.2009.09.003.
  • 22. N. Neithalath, J. Persun, A. Hossain, Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cem. Concr. Res. 39, 473-481 (2009). https://doi.org/10.1016/j.cemconres.2009.03.006.
  • 23. Ł. Gołek, Glass powder and high-calcium fly ash based binders - Long term examinations. J. Clean. Prod. 220, 493-506 (2019). https://doi.org/10.1016/j.jclepro.2019.02.095.
  • 24. C. Johnston, Waste Glass as Coarse Aggregate for Concrete. J. Test. Eval. 2, 344-350 (1974). https://doi.org/10.1520/JTE10117J.
  • 25. I.B. Topçu, M. Canbaz, Properties of concrete containing waste glass. Cem. Concr. Res. 34, 267-274 (2004). https://doi.org/10.1016/j.cemconres. 2003.07.003.
  • 26. N. Schwarz, H. Cam, N. Neithalath, Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cem. Concr. Compos. 30, 486-496 (2008). https://doi.org/10.1016/j.cemconcomp.2008.02.001.
  • 27. R.-U.-D. Nassar, P. Soroushian, Green and durable mortar produced with milled waste glass. Mag. Concr. Res. 64, 605-615 (2012). https://doi.org/10.1680/macr.11.00082.
  • 28. A. Shayan, A. Xu, Value-added utilisation of waste glass in concrete. Cem. Concr. Res. 34 (2004) 81-89. https://doi.org/10.1016/S0008-8846(03)00251-5.
  • 29. J.A. Jain, N. Neithalath, Chloride transport in fly ash and glass powder modified concretes - Influence of test methods on microstructure. Cem. Concr. Compos. 32, 148-156 (2010). https://doi.org/10.1016/j.cemconcomp.2009.11.010.
  • 30. N. Schwarz, N. Neithalath, Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cem. Concr. Res., 38, 429-436 (2008). https://doi.org/10.1016/j.cemconres.2007.12.001.
  • 31. V. Vaitkevičius, E. Šerelis, H. Hilbig, The effect of glass powder on the microstructure of ultra high performance concrete. Constr. Build. Mater. 68, 102–109 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.101.
  • 32. M.N.N. Khan, A.K. Saha, P.K. Sarker, Reuse of waste glass as a supplementary binder and aggregate for sustainable cement-based construction materials: A review. J. Build. Eng. 28 (2020). 101052. https://doi.org/10.1016/j.jobe.2019.101052.
  • 33. M. Kamali, A. Ghahremaninezhad. An investigation into the hydration and microstructure of cement pastes modified with glass powders. Constr. Build. Mater. 112, 915-924 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.085.
  • 34. Ł. Gołek, E. Kapeluszna, Comparison of the properties of alkali activated monticellite and gehlenite glasses. Cem. Wapno Beton. 19(6), 19, 416-421 (2014).
  • 35. Ł. Gołek, E. Kapeluszna, K. Rzepa, Investigations of the glass activity in municipal and special incinerating plants waste. Cem. Wapno Beton 22(1), 77-89 (2017).
  • 36. Ł. Gołek, J. Deja, M. Sitarz, The hydration process of alkali activated calcium aluminosilicate glasses. Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B., 60, 78-90 (2019). https://doi.org/10.13036/17533562.60.2.14026.
  • 37. H. Jang, S. Jeon, H. So, S. So, Properties of different particle size of recycled TFT-LCD waste glass powder as a cement concrete binder. Int. J. Precis. Eng. Manuf. 16, 2591-2597 (2015). https://doi.org/10.1007/s12541-015-0331-7.
  • 38. M. Kamali, A. Ghahremaninezhad, Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr. Build. Mater. 98, 407-416 (2015). https://doi.org/10.1016/j.conbuildmat.2015.06.010.
  • 39. H. Du, K.H. Tan, Properties of high volume glass powder concrete. Cem. Concr. Compos. 75, 22–29 (2017). https://doi.org/10.1016/j.cemconcomp.2016.10.010.
  • 40. A. Khmiri, M. Chaabouni, B. Samet, Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Constr. Build. Mater. 44, 74-80 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.040.
  • 41. M. Mirzahosseini, K.A. Riding, Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM). Cem. Concr. Compos. 56, 95-105 (2015). https://doi.org/10.1016/j.cemconcomp.2014.10.004.
  • 42. J. Xin Lu, Z. hua Duan, C.S. Poon, Combined use of waste glass powder and cullet in architectural mortar. Cem. Concr. Compos. 82, 34-44 (2017). https://doi.org/10.1016/j.cemconcomp.2017.05.011.
  • 43. K. Pacewicz, A. Sobotka, Ł. Gołek, Characteristic of materials for the 3D printed building constructions by additive printing, MATEC Web Conf., 222 (2018). 01013. https://doi.org/10.1051/matecconf/201822201013.
  • 44. M. Mirzahosseini, K.A. Riding, Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder. Cem. Concr. Res. 58, 103-111 (2014). https://doi.org/10.1016/j.cemconres.2014.01.015.
  • 45. C. Shi, Y. Wu, C. Riefl r, H. Wang, Characteristics and pozzolanic reactivity of glass powders. Cem. Concr. Res. 35, 987-993 (2005). https://doi.org/10.1016/j.cemconres.2004.05.015.
  • 46. S. Liu, G. Xie, S. Wang, Effect of curing temperature on hydration properties of waste glass powder in cement-based materials. J. Therm. Anal. Calorim. 119, 47-55 (2015). https://doi.org/10.1007/s10973-014-4095-6.
  • 47. S.C. Kou, F. Xing, The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of Fibre-Reinforced Ultrahigh Performance Concrete. Adv. Mater. Sci. Eng. 2012, 1-8 (2012). https://doi.org/10.1155/2012/263243.
  • 48. CO2 European Emission Allowances, (n.d.). https://markets.businessinsider.com/commodities/co2-european-emission-allowances (accessed November 12, 2020).
  • 49. A. Mohajerani, J. Vajna, T.H.H. Cheung, H. Kurmus, A. Arulrajah, S. Horpibulsuk, Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 156, 443-467 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.005.
  • 50. EU Glass Packaging Closed Loop Recycling Steady at 74 percent - FEVE, (n.d.). https://feve.org/recyclingstats2018/ (accessed April 10, 2018).
  • 51. S. Diamond, Hydraulic Cement Pastes: their structure and properties, in: Proc. a Conf. Held Tapt. Hall, 1976, pp. 2-30.
  • 52. L.E. Menchaca-Ballinas, J.I. Escalante-García, Limestone as aggregate and precursor in binders of waste glass activated by CaO and NaOH. Constr. Build. Mater. 262, 120013 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c15b6f0f-a1a1-4740-aa66-209545f63d91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.