Czasopismo
2024
|
Vol. 72, nr 3
|
art. no. e149171
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
This article examines in depth the most recent thermal testing techniques for lithium-ion batteries (LIBs). Temperature estimation circuits can be divided into six divisions based on modeling and calculation methods, including electrochemical computational modeling, equivalent electric circuit modeling (EECM), machine learning (ML), digital analysis, direct impedance measurement and magnetic nanoparticles as a base. Complexity, accuracy and computational cost-based EECM circuits are feasible. The accuracy, usability and adaptability of diagrams produced using ML have the potential to be very high. However, none of them can anticipate the low-cost integrated BMS in real time due to their high computational costs. An appropriate solution might be a hybrid strategy that combines EECM and ML.
Rocznik
Tom
Strony
art. no. e149171
Opis fizyczny
Bibliogr. 115 poz., rys., tab.
Twórcy
- Energy and Renewable Energy Department, Faculty of Engineering, Egyptian Chinese University, 14 Abou Ghazalh, Mansheya El-Tahrir, Ain Shams, Cairo, Egypt, ahmedabdelbaset2016@gmail.com
autor
- Department of Mechanical Engineering, Faculty of Engineering, The British University in Egypt, El Sherouk City, Cairo, Egypt
autor
- Department of Electric Power and Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt
autor
- Department of Electric Power and Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt
Bibliografia
- [1] X. Zhang, Z. Li, L. Luo, Y. Fan, and Z. Du, “A review on thermal management of lithium-ion batteries for electric vehicles,” Energy, vol. 238, p. 121652, 2022, doi: 10.1016/j.energy.2021.121652.
- [2] G. Karimi and X. Li, “Thermal management of lithium-ion batteries for electric vehicles,” Int. J. Energy Res., vol. 37, pp. 13–2,4, 2013. doi: 10.1002/er.1956.
- [3] R.R. Richardson, P.T. Ireland, and D.A. Howey, “Battery internal temperature estimation by combined impedance and surface temperature measurement,” J. Power Sources, vol. 265, pp. 254–261, 2014, doi: 10.1016/j.jpowsour.2014.04.129.
- [4] G. Liu et al., “Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors,” J. Therm. Anal. Calorim., vol. 116, pp. 1001–1010, 2014, doi: 10.1007/s10973-013-3599-9.
- [5] X. Lin, Y. Kim, S. Mohan, J.B. Siegel, and A.G. Stefanopoulou, “Modeling and Estimation for Advanced Battery Management,” Annu. Rev. Contr. Robot. Autonom. Syst., vol. 2, pp. 393–426, 2019. doi: 10.1146/annurev-control-053018-023643.
- [6] S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge estimation,” Proc. 2001 American Control Conference, USA, 2001, vol. 2, pp. 1644–1649, doi: 10.1109/ACC.2001.945964.
- [7] H. Sun, D. Yang, L. Wang, and K. Wang, “A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model,” Int. J. Energy Res., vol. 46, pp. 24091–24104, 2022. doi: 10.1002/er.8709.
- [8] M. Zhang et al., “A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms,” Energies, vol. 16, p. 3167, 2023, doi: 10.3390/en16073167.
- [9] Z. Zhang, L. Zhang, L. Hu, and C. Huang, “Active cell balancing of lithium-ion battery pack based on average state of charge,” Int. J. Energy Res., vol. 44, pp. 2535–2548, 2020, doi: 10.1002/er.4876.
- [10] W. Zhang, X. Li, and X. Li, “Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation,” Measurement, vol. 164, p. 108052, 2020, doi: 10.1016/j.measurement.2020.108052.
- [11] A. Senyshyn, M.J. Mühlbauer, O. Dolotko, and H. Ehrenberg, “Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite,” J. Power Sources, vol. 282, pp. 235–240, 2015, doi: 10.1016/j.jpowsour.2015.02.008.
- [12] J. Jaguemont, L. Boulon, P. Venet, Y. Dubé, and A. Sari, “Lithium-Ion Battery Aging Experiments at Subzero Temperatures and Model Development for Capacity Fade Estimation,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4328–4343, June 2016, doi: 10.1109/TVT.2015.2473841.
- [13] S. Surya, V. Marcis, and S. Williamson, “Core Temperature Estimation for a Lithium-ion 18650 Cell,” Energies, vol. 14, 87, 2020. doi: 10.3390/en14010087.
- [14] S. Surya, and Ajrun MN, “Effect of Fast Discharge of a Battery on its Core Temperature,” 2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR), 2020, pp. 1–6, doi: 10.1109/ICFCR50903.2020.9249999.
- [15] Z. Wei, J. Zhao, H. He, G. Ding, H. Cui, and L. Liu, “Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement,” J. Power Sources, vol. 489, p. 229462, 2021, doi: 10.1016/j.jpowsour.2021.229462.
- [16] S. Orcioni, L. Buccolini, A. Ricci, and M. Conti, “Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment,” Energies, vol. 10, p. 375, 2017, doi: 10.3390/en10030375.
- [17] M. Rouholamini et al., “A Review of Modeling, Management, and Applications of Grid-Connected Li-Ion Battery Storage Systems,” IEEE Trans. Smart Grid, vol. 13, pp. 4505–4524, 2022, doi: 10.1109/TSG.2022.3188598.
- [18] J. Fleming, T. Amietszajew, J. Charmet, A.J. Roberts, D. Greenwood, and R. Bhagat, “The design and impact of in-situ and operando thermal sensing for smart energy storage,” J. Energy Storage , vol. 22, pp. 36–43, 2019, doi: 10.1016/j.est.2019.01.026.
- [19] Y. Ye, Y. Shi, N. Cai, J. Lee, and X. He, “Electro-thermal modeling and experimental validation for lithium-ion battery,” J. Power Sources, vol. 199, pp. 227–238, 2012. doi: 10.1016/j.jpowsour.2011.10.027.
- [20] H. He and X. Chen, “Analysing unbalanced ageing in EV battery Packs using the Low-Cost Lumped Single Particle Model (LSPM): the impact of temperature gradients among parallel-connected cells,” Transp. Res. Procedia, vol. 70, pp. 406–413, 2019, doi: 10.1016/j.trpro.2023.11.046.
- [21] A.A. El Baset A. El Halim, E.H. Eid Bayoumi, W. El-Khattam, and A.M. Ibrahim, “Development of robust and accurate thermo-electrochemical models for Lithium-ion batteries”, e-Prime-Adv. Electr. Eng. Electron. Energy, vol. 6, p. 100342, 2023, doi: 10.1016/j.prime.2023.100342.
- [22] B. Sun, X. Qi, D. Song, and H. Ruan, “Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries,” Energies, vol. 16, p. 7142, 2023, doi: 10.3390/en16207142.
- [23] C. Zhu, X. Li, L. Song, and L. Xiang, “Development of a theoretically based thermal model for lithium ion battery pack”, J. Power Sources, vol. 223, pp. 155–164, 2013, doi: 10.1016/j.jpowsour.2012.09.035.
- [24] R. Klein, N.A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen and A. Kojic, “Electrochemical Model Based Observer Design for a Lithium-Ion Battery,” IEEE Trans. Control Syst. Technol., vol. 21, pp. 289–3, 2013, doi: 10.1109/TCST.2011.2178604.
- [25] Y. Chen et al., “A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards,” J. Energy Chem., vol. 59, pp. 83–99, 2021, doi: 10.1016/j.jechem.2020.10.017.
- [26] X.-G. Yang, Y. Leng, G. Zhang, S. Ge, and C.-Y. Wang, “Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging,” J. Power Sources, vol. 360, pp. 28–40, 2017, doi: 10.1016/j.jpowsour.2017.05.110.
- [27] L. Song and J.W. Evans, “Electrochemical-Thermal Model of Lithium Polymer Batteries,” J. Electrochem. Soc., vol. 147, p. 2086, 2000, doi: 10.1149/1.1393490.
- [28] W. Allafi et al., “A lumped thermal model of lithium-ion battery cells considering radiative heat transfer,” Appl. Therm. Eng., vol. 143, pp. 472–481, 2018, doi: 10.1016/j.applthermaleng.2018.07.105.
- [29] S. Tamilselvi et al., “A Review on Battery Modelling Techniques,” Sustainability, vol. 13, p. 10042, 2021, doi: 10.3390/su131810042.
- [30] C. Zhang, K. Li, S. Mcloone, and Z. Yang, “Battery modeling methods for electric vehicles – A review,” 2014 European Control Conference (ECC), 2014, doi: 10.1109/ECC.2014.6862541.
- [31] H. Hinz, “Comparison of Lithium-Ion Battery Models for Simulating Storage Systems in Distributed Power Generation,” Inventions, vol. 4, p. 41, 2019, doi: 10.3390/inventions4030041.
- [32] M. Gilaki and I. Avdeev, “Impact modeling of cylindrical lithium-ion battery cells: a heterogeneous approach,” J. Power Sources, vol. 328, pp. 443–451, 2016, doi: 10.1016/j.jpowsour.2016.08.034.
- [33] M. Safari and C. Delacourt, “Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence,” J. Electrochem. Soc., vol. 158, p. A63, 2011, doi: 10.1149/1.3515902.
- [34] Y. Xiao and B. Fahimi, “State-space based multi-nodes thermal model for lithium-ion battery,” Proc. IEEE Transportation Electrification Conference and Expo: Components, Systems, and Power Electronics – From Technology to Business and Public Policy, ITEC 2014, 2014, doi: 10.1109/ITEC.2014.6861846.
- [35] Y.-W. Pan et al., “A computational multi-node electro-thermal model for large prismatic lithium-ion batteries,” J. Power Sources, vol. 459, p. 228070, 2020, doi: 10.1016/j.jpowsour.2020.228070.
- [36] N. Tian, H. Fang, and Y. Wang, “3-D Temperature Field Reconstruction for a Lithium-Ion Battery Pack: A Distributed Kalman Filtering Approach,” IEEE Trans. Control Syst. Technol., vol. 27, pp. 847–854, 2019, doi: 10.48550/arXiv.1709.08819.
- [37] B. Mao, C. Zhao, H. Chen, Q. Wang, and J. Sun, “Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery”, Appl. Energy, vol. 281, p. 116054, 2021, doi: 10.1016/j.apenergy.2020.116054.
- [38] H. Ruan, J. Jiang, B. Sun, W. Gao, L. Wang, and W. Zhang, “On-line estimation of thermal parameters based on a reduced wide-temperature-range electro-thermal coupled model for lithium-ion batteries,” J. Power Sources, vol. 396, pp. 715–724, 2018, doi: 10.1016/j.jpowsour.2018.03.075.
- [39] T. Wang, K.J. Tseng, J. Zhao, and Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Appl. Energy, vol. 134, pp. 229–238, 2014, doi: 10.1016/j.apenergy.2014.08.013.
- [40] B. Liu, S. Yin, and J. Xu, “Integrated computation model of lithium-ion battery subject to nail penetration,” Appl. Energy, vol. 183, pp. 278–289, 2016, doi: 10.1016/j.apenergy.2016.08.101.
- [41] S. Anwar, C. Zou, and C. Manzie, “Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates”, IFAC Proc. Vol., vol. 47, pp. 6258–6263, 2014, doi: 10.3182/20140824-6-ZA-1003.00919.
- [42] K. Kumaresan, G. Sikha, and R.E. White, “Thermal Model for a Li-Ion Cell,” J. Electrochem. Soc., vol. 155, p. A164, 2008, doi: 10.1149/1.2817888.
- [43] C. Forgez, V.D. Do, G. Friedrich, M. Morcrette, and C. Delacourt, “Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery,” J. Power Sources, vol. 195, pp. 2961–2968, 2010, doi: 10.1016/j.jpowsour.2009.10.105.
- [44] D.W. Dees, V.S. Battaglia, and A. Bélanger, “Electrochemical modeling of lithium polymer batteries,” J. Power Sources, vol. 110, pp. 310–320, 2002, doi: 10.1016/S0378-7753(02)00193-3.
- [45] S. Ludwig, M. Steinhardt, and A. Jossen, “Determination of Internal Temperature Differences for Various Cylindrical Lithium-Ion Batteries Using a Pulse Resistance Approach,” Batteries, vol. 8, p. 60, 2022, doi: 10.3390/batteries8070060.
- [46] M. Walter, M.V. Kovalenko, and K.V. Kravchyk, “Challenges and benefits of post-lithium-ion batteries,” New J. Chem., vol.44, no. 5, pp. 1677–1683, 2020, doi: 10.1039/C9NJ05682C.
- [47] M. Petzl, M. Kasper, and M.A. Danzer, “Lithium plating in a commercial lithium-ion battery – A low-temperature aging study,” J. Power Sources, vol. 275, pp. 799–807, 2015, doi: 10.1016/j.jpowsour.2014.11.065.
- [48] P. Ping, Q. Wang, Y. Chung, and J. Wen, “Modeling electro-thermal response of lithium-ion batteries from normal to abuse conditions,” Appl. Energy, vol. 205, pp. 1327–1344, 2017, doi: 10.1016/j.apenergy.2017.08.073.
- [49] Al-S. Hallaj and J.R. Selman, “Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications,” J. Power Sources, vol. 110, no. 2, pp. 341–348, 2002, doi: 10.1016/S0378-7753(02)00196-9.
- [50] T.F. Fuller, M. Doyle, and J. Newman, “Simulation and Optimization of the Dual Lithium-Ion Insertion Cell,” J. Electrochem. Soc., vol. 141, pp. 1–10, 1994, doi: 10.1149/1.2054684.
- [51] S.S. Madani, E. Schaltz, and S.K. Kær, “Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries,” Batteries, vol. 4, p. 20, 2018, doi: 10.3390/batteries4020020.
- [52] C.R. Pals and J. Newman, “Thermal Modeling of the Lithium/Polymer Battery: II. Temperature Profiles in a Cell Stack,” J. Electrochem. Soc., vol. 142, pp. 3282–3288, 1995. doi: 10.1149/ 1.2049975.
- [53] Al S. Hallaj, H. Maleki, J.S. Hong, and J.R. Selman, “Thermal modeling and design considerations of lithium-ion batteries,” J. Power Sources, vol. 83, pp. 1–8, 1999, doi: 10.1016/S0378-7753(99)00178-0.
- [54] K. Esfarjani, J. Garg, and G. Chen, “Modeling heat conduction from first principles,” Annu. Rev. Heat Transf., vol. 17, pp. 9–47, 2014, doi: 10.1615/AnnualRevHeatTransfer.2014007746.
- [55] D.Y. Kim, B. Lee, M. Kim, and J.H. Moon, “Thermal assessment of lithium-ion battery pack system with heat pipe assisted passive cooling using Simulink,” Therm. Sci. Eng. Prog., vol. 46, p. 102230, 2023, doi: 10.1016/j.tsep.2023.102230.
- [56] J. Newman, “Temperature Rise in a Battery Module with Constant Heat Generation,” J. Electrochem. Soc., vol. 142, no. 4, p. 1054, 1995. doi: 10.1149/1.2044130.
- [57] S.C. Chen, C.C. Wan, and Y.Y. Wang, “Thermal analysis of lithium-ion batteries,” J. Power Sources, vol. 140, pp. 111–124, 2005, doi: 10.1016/j.jpowsour.2004.05.064.
- [58] W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J. Moškon, and M. Gaberšček, “The thermodynamic origin of hysteresis in insertion batteries,” Nat. Mater., vol. 9, pp. 448–453, 2010, doi: 10.1038/nmat2730.
- [59] Y. Li, Z. Zhou, and Wu. Wei-Tao “Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery,” Energies, vol. 13, no. 4, p. 1013, 2020, doi: 10.3390/en13041013.
- [60] K. Thomas, J. Newman, and R. Darling, Mathematical modeling of lithium batteries, Kluwer Academic Publishers, Lawrence Berkeley National Laboratory, LBNL Report #: LBNL-53807, 2002. [Online] Available: https://escholarship.org/uc/item/6905515d.
- [61] W. Van Schalkwijk and B. Scrosati, “Advances in Lithium-Ion Batteries Introduction,” in Advances Lithium-Ion Batteries, Springer New York, 2002, , pp. 1–5 doi: 10.1007/b113788.
- [62] K. Smith and C.-Y. Wang, “Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles,” J. Power Sources, vol. 160, pp. 662–673, 2006, doi: 10.1016/j.jpowsour.2006.01.038.
- [63] D.W. Sundin and S. Sponholtz, “Thermal Management of Li-Ion Batteries With Single-Phase Liquid Immersion Cooling,” IEEE Open J. Veh. Technol., vol. 1, pp. 82–92, 2020, doi: 10.1109/OJVT.2020.2972541.
- [64] W. Fang, O.J. Kwon, and C.-Y. Wang, “Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell,” Int. J. Energy Res., vol. 34, pp. 107–115, 2009, doi: 10.1002/er.1652.
- [65] U.S. Kim, J. Yi, C.B. Shin, T. Han, and S. Park, “Modeling the thermal behaviour of a lithium-ion battery during charge,” J. Power Sources, vol. 196, pp. 5115–5121, 2011, doi: 10.1016/j.jpowsour.2011.01.103.
- [66] R.E. Gerver and J.P. Meyers, “Three-Dimensional Modeling of Electrochemical Performance and Heat Generation of Lithium-Ion Batteries in Tabbed Planar Configurations,” J. Electrochem. Soc., vol. 158, no. 7, p. A835, 2011, doi: 10.1149/1.3591799.
- [67] J. Zhang, X.-G. Yang, F. Sun, Z. Wang, and C.-Y. Wang, “An online heat generation estimation method for lithium-ion batteries using dual-temperature measurements,” Appl. Energy, vol. 272, p. 115262, 2020, doi: 10.1016/j.apenergy.2020.115262.
- [68] P. Wang, L. Yang, H. Wang, D.M. Tartakovsky, and S. Onori, “Temperature estimation from current and voltage measurements in lithium-ion battery systems,” J. Energy Storage , vol. 34, p.102133, 2021, doi: 10.1016/j.est.2020.102133.
- [69] S. Marelli and M. Corno, “Model-Based Estimation of Lithium Concentrations and Temperature in Batteries Using Soft-Constrained Dual Unscented Kalman Filtering,” IEEE Trans. Control Syst. Technol., vol. 29, no 2, pp. 926–933, 2021, doi: 10.1109/TCST.2020.2974176.
- [70] X. Na, H. Kang, T. Wang, and Y. Wang, “Reverse layered air flow for Li-ion battery thermal management,” Appl. Therm. Eng., vol. 143, pp. 257–262, 2018, doi: 10.1016/j.applthermaleng.2018.07.080.
- [71] Ch. Park and A. Jaura, “Dynamic Thermal Model of Li-Ion Battery for Predictive Behavior in Hybrid and Fuel Cell Vehicles,” SAE Trans., vol. 112, pp. 1835–1842, 2023, doi: 10.4271/2003-01-2286.
- [72] D.J. Ravindra, R. Kumar, and L. Ma, “Thermal performance of a novel confined flow Li-ion battery module,” Appl. Therm. Eng., vol. 146, pp. 1–11, 2019, doi: 10.1016/j.applthermaleng.2018.09.099.
- [73] H. Maleki and A.K. Shamsuri, “Thermal analysis and modeling of a notebook computer battery,” J. Power Sources, vol. 115 no. 1, pp. 131–136, 2003, doi: 10.1016/S0378-7753(02)00722-X.
- [74] X. Lin et al., “A lumped-parameter electro-thermal model for cylindrical batteries,” J. Power Sources, vol. 257, pp. 1–11, 2014, doi: 10.1016/j.jpowsour.2014.01.097.
- [75] D. Li, and L. Yang, “Identification of spatial temperature gradient in large format lithium battery using a multilayer thermal model,” Int. J. Energy Res., vol. 44, no. 1, pp. 282–297, 2019, doi: 10.1002/er.4914.
- [76] L. Xinfan, A.G. Stefanopoulou, H.E. Perez, J.B. Siegel, L. Yonghua, and R.D. Anderson, “Quadruple adaptive observer of the core temperature in cylindrical Li-ion batteries and their health monitoring,” 2012 American Control Conference (ACC), 2012, doi: 10.1109/ACC.2012.6315386.
- [77] X. Lin et al., “Parameterization and Observability Analysis of Scalable Battery Clusters for Onboard Thermal Management,” Oil Gas Sci. Technol., vol. 68, no. 1, pp. 165–178, 2013, doi: 10.2516/ogst/2012075.
- [78] J. Sun et al., “Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter,” Energies, vol. 8, no. 5, pp. 4400–4415, 2015, doi: 10.3390/en8054400.
- [79] H. Dai, L. Zhu, J. Zhu, X. Wei, and Z. Sun, “Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries,” J. Power Sources, vol. 293, pp. 351–365, 2015, doi: 10.1016/j.jpowsour.2015.05.087.
- [80] D.H. Doughty, P.C. Butler, R. Jungst, and E.P. Roth, “Lithium battery thermal models,” J. Power Sources, vol. 110, pp. 357–363, 2002, doi: 10.1016/s0378-7753(02)00198-2.
- [81] Y. Zheng, Y. Che, X. Hu, X. Sui, D.-I. Stroe, and R. Teodorescu, “Thermal state monitoring of lithium-ion batteries: Progress, challenges, and opportunities,” Prog. Energy Combust. Sci., vol. 100, p. 101120, 2024, doi: 10.1016/j.pecs.2023.101120.
- [82] L. Sun, W. Sun, and F. You, “Core temperature modeling and monitoring of lithium-ion battery in the presence of sensor bias,” Appl. Energy, vol. 271, p. 115243, 2020, doi: 10.1016/j.apenergy.2020.115243.
- [83] C. Zhu, Y. Shang, F. Lu, Y. Jiang, C. Cheng, and C. Mi, “Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates,” IEEE Trans. Ind. Inform., vol. 16, pp. 3366–3375, 2020, doi: 10.1109/TII.2019.2960833.
- [84] Y. Xiao, “Model-Based Virtual Thermal Sensors for Lithium-Ion Battery in EV Applications,” IEEE Trans. Ind. Electron., vol. 62, no 5, pp. 3112–3122, 2015, doi: 10.1109/TIE.2014.2386793.
- [85] Y. Ma, Y. Cui, H. Mou, J. Gao, and H. Chen, “Core Temperature Estimation of Lithium-Ion Battery for EVs Using Kalman Filter,” Appl. Therm. Eng., vol. 168, p. 114816, 2020, doi: 10.1016/j.applthermaleng.2019.114816.
- [86] H. Ren, L. Jia, C. Dang, and Z. Qi, “An electrochemical-thermal coupling model for heat generation analysis of prismatic lithium battery,” J. Energy Storage, vol. 50, p. 104277, 2022, doi: 10.1016/j.est.2022.104277.
- [87] D.H. Jeon, “Numerical modeling of lithium-ion battery for predicting thermal behavior in a cylindrical cell,” Curr. Appl. Phys., vol. 14, no 2, pp. 196–205, 2014, doi: 10.1016/j.cap.2013.11.006.
- [88] N. Baba, H. Yoshida, M. Nagaoka, C. Okuda, and S. Kawauchi, “Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model,” J. Power Sources, vol. 252, pp. 214–228, 2014, doi: 10.1016/j.jpowsour.2013.11.111.
- [89] S. Du et al., “Study on the thermal behaviors of power lithium iron phosphate (LFP) aluminum-laminated battery with different tab configurations,” Int. J. Therm. Sci., vol. 89, pp. 327–336, 2015, doi: 10.1016/j.ijthermalsci.2014.11.018.
- [90] J. Yi, J. Lee, C.B. Shin, T. Han, and S. Park, “Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling,” J. Power Sources, vol. 277, pp. 379–386, 2015, doi: 10.1016/j.jpowsour.2014.12.028.
- [91] M. Fleckenstein, O. Bohlen, M.A. Roscher, and B. Bäker, “Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients,” J. Power Sources, vol. 196, no 10, pp. 4769–4778, 2011, doi: 10.1016/j.jpowsour.2011.01.043.
- [92] R. Guo, L. Lu, M. Ouyang, and X. Feng, “Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries,” Sci. Rep., vol. 6, no 1, 2016, doi: 10.1038/srep30248.
- [93] D. Rittel, “Transient temperature measurement using embedded thermocouples,” Exp. Mech., vol. 38, pp. 73–78, 1998, doi: 10.1007/BF02321647.
- [94] G. Zhang, S. Ge, T. Xu, X.G. Yang, H. Tian, and C.Y. Wang, “Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures,” Electrochim. Acta, vol. 218, pp. 149–155, 2016, doi: 10.1016/j.electacta.2016.09.117.
- [95] R. Srinivasan, B.G. Carkhuff, M.H. Butler, and A.C. Baisden, “Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells,” Electrochim. Acta, vol. 56, no. 17, pp. 6198–6204, 2011, doi: 10.1016/j.electacta.2011.03.136.
- [96] R. Srinivasan, “Monitoring dynamic thermal behavior of the carbon anode in a lithium-ion cell using a four-probe technique,” J. Power Sources, vol. 198, pp. 351–358, 2012, doi: 10.1016/j.jpowsour.2011.09.077.
- [97] J.P. Schmidt, S. Arnold, A. Loges, D. Werner, T. Wetzel, E. Ivers-Tiffée, “Measurement of the internal cell temperature via impedance: Evaluation and application of a new method,” J. Power Sources, vol. 243, pp. 110–117, 2013, doi: 10.1016/j.jpowsour.2013.06.013.
- [98] Y. Troxler et al., “The effect of thermal gradients on the performance of lithium-ion batteries,” J. Power Sources, vol. 247, pp. 1018–1025, 2014, doi: 10.1016/j.jpowsour.2013.06.084.
- [99] U. Tröltzsch, O. Kanoun, and H.-R. Tränkler, “Characterizing aging effects of lithium ion batteries by impedance spectroscopy,” Electrochim. Acta, vol. 51, pp. 1664–1672, 2006, doi: 10.1016/j.electacta.2005.02.148.
- [100] R.R. Richardson and D.A. Howey, “Sensorless Battery Internal Temperature Estimation Using a Kalman Filter With Impedance Measurement,” IEEE Trans. Sustain. Energy, vol. 6, no. 4, pp. 1190–1199, 2015, doi: 10.1109/TSTE.2015.2420375.
- [101] J.G. Zhu, Z.C. Sun, X.Z. Wei, and H.F. Dai, “A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement,” J. Power Sources, vol. 274, pp. 990–1004, 2015, doi: 10.1016/j.jpowsour.2014.10.182.
- [102] M. Debert, G. Colin, G. Bloch, and Y. Chamaillard, “An observer looks at the cell temperature in automotive battery packs,” Control Eng. Practice, vol. 21, no. 8, pp. 1035–1042, 2013, doi: 10.1016/j.conengprac.2013.03.001.
- [103] X. Hu, H. Yuan, C. Zou, Z. Li, and L. Zhang, “Co-Estimation of State of Charge and State of Health for Lithium-Ion Batteries Based on Fractional-Order Calculus,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10319–10329, 2018, doi: 10.1109/TVT.2018.2865664.
- [104] Z. Wang, J. Ma, and L. Zhang, “State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression,” IEEE Access, vol. 5, pp. 21286–21295, 2017, doi: 10.1109/ACCESS.2017.2759094.
- [105] A. Hande, “Internal battery temperature estimation using series battery resistance measurements during cold temperatures,” J. Power Sources, vol. 158, no. 2, pp. 1039–1046, 2006, doi: 10.1016/j.jpowsour.2005.11.027.
- [106] D.A. Howey, P.D. Mitcheson, V. Yufit, G.J. Offer, and N.P. Brandon, “Online Measurement of Battery Impedance Using Motor Controller Excitation,” IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2557–2566, 2014, doi: 10.1109/TVT.2013.2293597.
- [107] Z. Liu and H.-X. Li, “A Spatiotemporal Estimation Method for Temperature Distribution in Lithium-Ion Batteries,” IEEE Trans. Ind. Inform., vol. 10, no. 4, pp. 2300–2307, 2014, doi: 10.1109/TII.2014.2341955.
- [108] R. Khelif, Chebel-B. Morello, S. Malinowski, E. Laajili, F. Fnaiech, and N. Zerhouni, “Direct Remaining Useful Life Estimation Based on Support Vector Regression,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2276–2285, 2017, doi: 10.1109/TIE.2016.2623260.
- [109] C. Sbarufatti, M. Corbetta, M. Giglio, and F. Cadini, “Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural net-works,” J. Power Sources, vol. 344, pp. 128–140, 2017, doi: 10.1016/j.jpowsour.2017.01.105.
- [110] K. Liu, K. Li, Q. Peng, Y. Guo, and L. Zhang, “Data-Driven Hybrid Internal Temperature Estimation Approach for Battery Thermal Management,” Complexity, vol. 2018, p. 9642892, 2018, doi: 10.1155/2018/9642892.
- [111] F. Feng et al., “Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model,” J. Power Sources, vol. 455, p. 227935, 2020, doi: 10.1016/j.jpowsour.2020.22 7935.
- [112] Y. Li, W. Liu, and J. Zhong, “Comparison of noninvasive and remote temperature estimation employing magnetic nanoparticles in DC and AC applied fields,” 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 2012, doi: 10.1109/I2MTC.2012.6229437.
- [113] J. Zhong, J. Dieckhoff, M. Schilling, and F. Ludwig, “Influence of static magnetic field strength on the temperature resolution of a magnetic nanoparticle thermometer,” J. Appl. Phys., vol. 120, vol. 14, p. 143902, 2016, doi: 10.1063/1.4964696.
- [114] J. Zhong, W. Liu, Z. Du, C.P. Morais, Q. Xiang, and Q. Xie, “A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles,” Nanotechnology, vol. 23, no. 7, p. 075703, 2012, doi: 10.1088/0957-4484/23/7/075703.
- [115] Y. Ma, Y. Cui, H. Mou, J. Gao, and H. Chen, “Core temperature estimation of lithium-ion battery for EVs using Kalman filter,” Appl. Therm. Eng., vol. 168, p. 114816, 2020, doi: doi: 10.1016/j.applthermaleng.2019.114816.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c14e5f0e-df5a-4e7d-864b-f8a6a9a04fe7