Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | z. 83 | 9--157
Tytuł artykułu

Model hydrologiczny i bilansowy w zintegrowanym gospodarowaniu zasobami wodnymi

Warianty tytułu
Języki publikacji
PL
Abstrakty
Wydawca

Rocznik
Tom
Strony
9--157
Opis fizyczny
Bibliogr. 411 poz., rys., tab., wykr.
Twórcy
  • Politechnika Warszawska
Bibliografia
  • 1. Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752.
  • 2. Abeysingha, N.S., Singh, M., Sehgal, V. K., Khanna, M., Pathak, H., Jayakody, P., Srinivasan, R. (2015). Assessment of water yield and evapotranspiration over 1985 to 2010 in the Gomti River basin in India using the SWAT model. Current science (Bangalore), 108(12), 2202-2212.
  • 3. Absalon, D. i Matysik, M. (2016). Zmiany odpływu w silnie zurbanizowanych zlewniach województwa śląskiego. Monografie Komitetu Gospodarki Wodnej PAN, 39, 175-186.
  • 4. Acreman M., Ja in S K., McCartney MP. Overton I., (2017): Chapter 2. Drivers and Social Context. [W:] Water for the Environment. From Policy and Science to Implementation and Management. Ed.: A.C. Home, J.A. Webb, M.J. Stewardson, B. Richter, M. Acreman. Academic Press. Elsevier, s. 19-35 (razem 758 stron).
  • 5. Acreman, M.C. i Dunbar, M.J. (2004). Defining environmental river flow requirements-a review. Hydrology and Earth System Sciences, 8(5), 861-876.
  • 6. Acreman, M. C., Overton, I.C., King, J., Wood, P.J., Cowx, I.G., Dunbar, M.J., Kendy E., Young, W.J. (20 14). The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal, 59(3-4), 433-450.
  • 7. Acreman, M., Arthington, A.H., Colloff, M.J, Couch, C., Crossman, N.D, Dyer, F., Overton, l. Pollino, C. A, Stewardson, M. J, Young, W. (2014) Environmental flows for naturl, hybrid, and novel riverine ecosystems in a changing world. Frontiers in Ecology and the Environmnent, 12(8), 466-473.
  • 8. Adamowski, J. i Halbe, J. (2011). Participatory water resources planning and management in a n Agriculturally Intensive Watershed in Quebec, Canada using Stakeholder Built System Dynamics Models. Annals of Warsaw University of Life Sciences- SGGW Land reclamation, 43(1), 3-11.
  • 9. Adeloye, A.J. i Montaseri, M. (2002). Preliminary streamflow data analyses prior to water resource planning study / Analyses préliminaires des données de débit en vue d'une étude de planification de ressources en eau. Hydrological Sciences Journal, 47(5), 679-692.
  • 10. Aghlmand, R. i Abbasi, A. (2019). Application of MODFLOW with Boundary Conditions Analyses Based on Limited Available Observations: A Case Study of Birjand Plain in East Iran. Water. 11(9).
  • 11. Ahmadian, R., Falconer, R.A., Wicks, J. (20 15). Benchmarking of flood inundation extent using various dynamically linked one- and two-dimensional approaches. Journal oj Flood Risk Management, 11(S1), S314-S328.
  • 12. Akpabio, E.M., Watson, N.M., Ite, U.E., Ukpong, !.E. (2007). Integrated water resources management in the Cross River Basin, Nigeria. Water resources development, 23(4), 691-708.
  • 13. Alcamo, J., Henrichs, T., Rösch, T. (2000): World Water in 2005 - Global modeling and scenario analysis for the World Commission on Water for the 21st Century. Report A0002, Center for Environmental Systems Research, University of Kassel.
  • 14. Aldous, A.R. i Bach, L. B. (20 14). Hydroecology of groundwater-dependent ecosystems : applying basic science to groundwater management. Hydrological Sciences Journal, 59(3-4), 530-544.
  • 15. Alemu Z.A. i Dioha M.O. (2020). Modelling scenarios for sustainable water supply and demand in Addis Ababa city, Ethiopia. Enviromnental systems research, 9(1), 1-14.
  • 16. Allen, R.G. (1986). A Penman for all seasons. Journal og Irrigation and Drainage Engineering, 112(4), 348-368.
  • 17. Allen, R. G., Jensen, M.E., Wright, J.L., Burman, R.D. (1989). Operational estimates of reference evapotranspiration. Agronomy journal, 81 (4), 650-662.
  • 18. Aqaveo.com https://www.aquaveo.com/software/sms-riverine-flood-modeling. Dostęp 13.08.2021.
  • 19. Arcadis/Proeko (2005). Wytyczne G3: Planowanie gospodarowania wodami w Polsce zgodnie z wymogami Ramowej Dyrektywy Wodnej. Pomoc techniczna we wdrażaniu RDW 2000/60/WE Projekt PHARE PL/2002/000-580.05.01. Arcadis/Proeko/Politechnika Warszawska.
  • 20. Archibald, T.W. i Marshall, S.E. (2018). Review of Mathematical Programming Applications in Water Resource Management Under Uncertainty. Environmental Modeling & Assessment, 23(6), 753-777.
  • 21. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
  • 22. Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R. Haney E.B., Neitsch, S.L., (2012a). Soil and Water Assessment Tool. Input/Output Documentation. Version 2012. Texas Water Resources Institute. TR-439.
  • 23. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89.
  • 24. Arthington, A.H., Naiman, R.J., McClain, M .E., Nilsson, C. (2010). Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology, 55(1), 1-16.
  • 25. Arthington, A. H., Bhaduri, A., Bunn, S., Jackson, S. E., Tharme, R.E., Tickner, D., Young, B., Acreman, M., Baker, N, Capon, S., Horne, A.C., Kendy, E., McClain, M.E., Poff, N., LeRoy, Richter, B.D., Ward, S. (2018). The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Frontiers in Environmental Science, 6, 45.
  • 26. Banasik K. (2009). Wyznaczanie wezbrań powodziowych w małych zlewniach zurbanizowanych. Wydawnictwo SGGW, Warszawa.
  • 27. Bao, H., Wang, L., Zhang, K., Li, Z. (2017). Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood forecasting. Atmospheric Science Letters, 18(7), 284-293.
  • 28. Baron, J.S., Poff, N. LeRoy, Angermeier, P.L., Dahm, C.N., Gleick, P.H., Hairston Jr., Nelson G., Jackson, R. B., Johnston, C.A., Richter, B. D., Steinman, A. D. (2002). Meeting Ecological and Societal Needs for Freshwater. Ecological Applications, 12(5), 1247-1260.
  • 29. Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., Giardino, A. (20 17). Collaborative modelling or participatory modelling? A framework for water resources management. Environmental Modeliing & Software, 91, 95-110.
  • 30. Bates, B.C., Kundzewicz, Z. W., Wu S. and Palutikof J.P., Eds., (2008): Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.
  • 31. Baxter RM. ( 1977). Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics 8, 255-283.
  • 32. Bear, J. i Verruijt, A. ( 1987). Modeling groundwater flow and pollution (vol. 2). Springer Science & Business Media.
  • 33. Beighley, R. E. i Moglen, G.E. (2002). Trend Assessment in Rainfall-Runoff Behavior in Urbanizing Watersheds. Journal of Hydrologie Engineering, 7(1), 27-34.
  • 34. Bellin, A., Majone, B., Cainelli, 0., Alberici, D., Villa, F. (2016). A continuous coupled hydrological and water resources management model. Environmental Modelling Software, 75, 176-192.
  • 35. Berger, M., Moreno, J., Johannessen, J.A., Levelt, P.F., Hanssen, R. F., (2012). ESA's sentinel missions in support of Earth system science. Remote Sens. Environ. 120, 84-90.
  • 36. Bertsekas, D.P. i Tseng, P. (1994). RELAX-IV: A faster version of the RELAX code for solving minimum cost flow problems. https://www.mit.edu/-dimitrib!RELAX4_doc.pdf
  • 37. Beven, K. (2006). Searching for the Holy Graił of scientific hydrology: Q, =H(S, R, Lit )A as closure. Hydrology and Earth System Sciences, 10(5), 609-618.
  • 38. Bhaduri, A., Bogardi, J., Leentvaar, J. and Marx, S. (2014). The Global Water System in the Anthropocene. Springer International Publishing.
  • 39. Bieger, K., Hörmann, G., Fohrer, Nicola. (2015). The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Regional Environmental Change, 15(3), 485-498.
  • 40. Birsan, M.V., Molnar, P., Burlando, P., Pfaundler, M. (2005). Streamflow trends in Switzerland. Journal of hydrology, 314(1-4), 312-329.
  • 41. Blueprint 2012 Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Blueprint to Safeguard Europe's Water Resources /* COM/2012/0673 finał */Blueprint 2012
  • 42. Bogardi, J.J, Leentvaar, J., Sebesvári, Z. (2020). Biologia Futura: integrating freshwater ecosystem health in water resources management. Biologia futura.
  • 43. Bonenberg J., Drużyńska E., Kindler J., Nachlik E., Pusłowska-Tyszewska D., Tyszewski S., (2006). Podstawy oceny i planowania alokacji zasobów wodnych. [W:) Podstawy metodyczne i standardy zintegrowanego planowania w gospodarce wodnej. E. Drużyńska, E. Nachlik (Red.) Seria Inżynieria Środowiska, 341, Wydawnictwa Politechniki Krakowskiej, 56-78.
  • 44. Booker, J.F., Michelsen, A.M., Ward, F.A. (2005). Economic impact of alternative policy responses to prolonged and severe drought in the Rio Graode Basin. Water Resources Research, 41 (2).
  • 45. Borja, A., White, M.P., Berdalet, E., Bock, N., Eatock, C., Kristensen, P., Leonard, A., Lloret, J., Pahl, S., Parga, M., Vera Prieto, J.V., Wuijts, S. and & Fleming, L.E. (2020). Moving toward an agenda on ocean health and human health in Europe. Frontiers in Marine Science, 7, 37.
  • 46. Bozic, M., Nikolic, G., Milosev, D., Rudic, Z., Tomovic, S. (2014). Assessment of groundwater management using modflow and benefit-cost analysis. Irrigation and Drainage, 63(4), 550-557.
  • 47. Bozorg-Haddad, 0., Abdi-Dehkordi, M., Hamedi, F., Pazoki, M. & Loáiciga, H. (2019). Generalized Storage Equations for Flood Routing with Nonlinear Muskingum Models. Water Resources Management, 33(8), 2677-2691.
  • 48. Braat, L. C. i van Lierop, W. F. (1987). Economic-ecological modeling. North Holland Publishing Co. p. 49-67.
  • 49. Bradley, D.C., Streetly, M., Farren, E., Cadman, D., Banham, A. (2014). Establishing hydroecological relationships to manage the impacts of groundwater abstraction. Water and environment journal, 28(1), 114-123.
  • 50. BRAIN, (2011), Bilans dynamiczny dla potrzeb sformułowania ograniczeń ilościowych i jakościowych w warunkach korzystania z wód zlewni rzeki Tywy, RZGW Szczecin.
  • 51. Breuer, L., Huisman, J.A., Willems, P., Bormann, H., Bronstert, A., Croke, B.F.W., Frede, H.-G., Gräff, T., Hubrechts L., Jakeman, A.J., Kite, G., Lanini, J., Leaveslay G., Lettenmaier, D.P., Lindström G., Seibert J. Sivapalan M., Viney, N.R. (2009). Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in water resources, 32(2), 129-146.
  • 52. Brisbane Declaration (2007): The Brisbane Declaration. Environmental Flows are Essential for Freshwater Ecosystem Health and Human Well-Being. Declaration of the 10th International River-symposium and International Environmental Flows Conference, Brisbane, Australia, 3-6 September 2007. https://www.conservationgateway.org/ConservationPractices/Freshwater/Environmental-Flows/MethodsandTools/ELOHA/Pages/Brisbane-Declaration.aspx
  • 53. Brown, C. (2010). The End of Reliability. Journal of Water Resources Planning and Management 136(2): 143-45. doi: 10.1061/(ASCE)WR.1943-5452.65
  • 54. Brown, R.A. i Pasternack, G.B. (2009). Comparison of methods for analysing salmon habitat rehabilitation designs for regulated rivers. River Research and Applications, 25(6), 745-772.
  • 55. Brunner G.W. (2021). HEC-RAS. River Analysis System User's Manuał. Version 6.0. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center. Davis. USA.
  • 56. Butterworth, J., Warner, J. F., Moriarty, P., Smits, S., Batchelor, C. (20 l 0). Finding practical approaches to integrated water resources management. Water alternatives, 3(1), 68-81.
  • 57. Cai, X. (2008). Implementation of holistic water resources-economic optimization models for river bas in management-reftective experiences. Environmental Modelling & Software, 23(1), 2-18.
  • 58. Cai, X., McKinney, D.C., Lasdon, L.S. (2002). A framework for sustainability analysis in water resources management and application to the Syr Darya Basin. Water Resources Research, 38(6), 21-1.
  • 59. Cai, X., McKinney, D.C., Lasdon, L. S. (2003a). Integrated hydrologic-agronomic-economic model for river bas in management. Journal of water resources planning and management, 129(1 ), 4-17.
  • 60. Cai, X., McKinney, D.C., Rosegrant, M.W. (2003b). Sustainability analysis for irrigation water management in the Aral Sea region. Agricultural systems, 76(3), 1043-1066.
  • 61. Camporese, M., Paniconi, C., Putti, M., Orlandini, S. ( 20 l 0). Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resources Research, 46(2).
  • 62. Carlisle, D.M., Falcone, J., Wolock, D.M., Meador, M.R. and Norris, R. H. (2010), Predicting the Natura! Flow Regime: Models for Assessing Hydrological Alteration in Streams. River Res. Applic., 26: 118-136. doi: 10.1002/rra.l 247.
  • 63. Cartwright, J., Caldwell, C., Nebiker, S., Knight, R. (2017). Putting Flow-Ecology Relationships into Practice: A Decision-Support System to Assess Fish Community Response to Water-Management Scenarios. Water, 9(3).
  • 64. Cea, L. i Bladé, E. (2015). A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resources Research, 51(7), 5464-5486.
  • 65. Ceola, S., Lai o, F., Montanari, A. (20 19). Global-scale human pressure evolution imprints on sustainability of river systems. Hydrology and Earth System Sciences, 23(9), 3933-3944.
  • 66. Cheng, G., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S. & Xiao, H. (2014). Integrated study of the water-ecosystem-economy in the Heihe River Basin. National science review, 1(3), 413-428.
  • 67. Chiang, L., Chaubey, I., Gita u, M.W., Arnold, J. G., (2010). Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model. Trans. ASABE 53 (5), 1569-1584.
  • 68. Chiba, S., Saito, H., Fletcher, R., Yogi, T., Kayo, M., Miyagi, S., Ogido, M., Fujikura, K. (2018). Human footprint in t he abyss: 30 year records of deep-sea plastic debris. Marine Policy, 96, 204-212.
  • 69. Clark, M.P., Kavetski, D., Fenicia, F. (2011). Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 47(9).
  • 70. Clark, M.P., Bierkens, M.F.P., Samaniego, L., Woods, R.A., Uijlenhoet, R., Bennett, K. E., Pauwels, V.R.N., Cai, X., Wood, A.W., Peters-Lidard, C.D. (2017). The evolution of process-based hydrologic models: hislorical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 21(7), 3427-3440.
  • 71. Corato, G., Moramarco, T., Tucciarelli, T. (2011). Discharge estimation combining flow routing and occasional measurements of velocity. Hydrology and Earth System Sciences, 15(9), 2979.
  • 72. Coron, L., Thirel, G., Delaigue, 0., Perrin, C., Andréassian, V. (20 17). The suite of lumped GR hydrological models in an R package. Environmental Modeliing Software, 94, 166-171.
  • 73. Costabile, P., Costanzo, C., Macchione, F. (2012). Comparative analysis of overland flow models using finite volume schemes. Journal of Hydroinformatics, 14(1), 122-135.
  • 74. Costabile, Pierfranco, Costanzo, Carmelina, Macchione, Francesco. (2013). A storm event watershed model for surface runoff based on 2D fully dynamic wave equations. Hydrological Processes, 27(4), 554-569.
  • 75. Costanza R., dArge R., de Groot R., Farber S., Grasso M., Hannon B., Limburg K., Naeem S., Oneill R. V., Paruelo J., Raskin R. G., Sutton P., van den Belt M., (1997). The value of the world's ecosystem services and natural capital Nature 387 (6630), 253-260.
  • 76. Costanza, R. i Daly, H.E. (1992). Natural capital and sustainable development. Conservation bio¬logy, 6(1), 37-46.
  • 77. Costanza, R., de Groot, R., Braat, L., Kubiszewski, J., Fioramonti, L., Sutton, P., Farber, S., Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1-16.
  • 78. Costanza, R., de Groot, R., Sutton, P., van der Ploeg, Sander, Anderson, Sharolyn J., Kubiszewski, J., Farber, S., Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26, 152-158.
  • 79. Cowx, J. i Portocarrero-Aya, M. (2011). Paradigm shifts in fish conservation: Moving to the ecosystem services concept. Journal of fish biology, 79(12), 1663-80.
  • 80. Croke, B.F. i Jakeman, A.J. (2004). A catchment moisture deficit module for the I HACRES rainfall-runoffmodel. Environmental Modeliing & Software, 19(1), 1-5.
  • 81. Cunge, J.A. ( 1 969). On the subject of a flood propagation computation method (Musklngum method). Journal of Hydraulic Research, 7(2), 205-230.
  • 82. Czaja S., Pociask-Karteczka J., (201 7): Obieg wody na terenach zurbanizowanych i przemysłowych (4.4.3), pp. 65-74. [W:] Hydrologia Polski. Ed.: P. Jokiel, W. Marszelewski, J. Pociask-Karteczka Wydawnictwo Naukowe PWN SA. Warszawa.
  • 83. Darbandsari, P. i Coulibaly, P. (2020). Intercomparison of lumped hydrological models in data¬-scarce watersheds using different precipitation forcing data sets: Case study of Northem Ontario, Canada. Journal of Hydrology: Regional Studies, 31, 100730.
  • 84. Davies, E. G. i Simonovic, S.P. (2011). Global water resources modeling with an integrated model of the social-economic-environmental system. Advances in water resources, 34(6), 684-700.
  • 85. Davis, M.D. (2007). Integrated water resource management and water sharing. Journal of water resources planning and managemenl, 133(5), 427-445.
  • 86. Dąbrowski S. z zespołem, (1996): Bilans wodnogospodarczy zlewni Wieprzy i Przymorza. Część I Dokumentacja hydrogeologiczna zasobów dyspozycyjnych wód podziemnych zlewni Wieprzy i Przymorza. Hydroconsult sp. z o.o. Poznań. Zamawiający: RZGW w Szczecinie.
  • 87. De Groot, R.S., Alkemade, R., Braat, L., Hein, L., Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological complexity, 7(3), 260-272.
  • 88. de Loe, R. C. i Patterson, J.J. (2018). Boundary judgments in water governance: Diagnosing internal and external factors that matter in a complex world. Water Resources Management, 32(2), 565-581.
  • 89. de Roo, A., Burek, P.A., Gentile, A., Udias, A., Bouraoui, F., Aloe, A., Bianchi, A., La Notte A., Kuik, 0., Tenreiro, J.E., Vandecasteele, 1., Mubareka, S., Baranzelli, C., Van Der Perk M., Lavalle, C., Bidoglio, G. (2012). A multi-criteria optimisation of scenarios for the protection ofwater resources in Europe: Support to the EU Blueprint to Safeguard Europe's Waters.
  • 90. de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., Brink, P., van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1(1), 50-61.
  • 91. de Groot, Rudolf S, Wilson, Matthew A, Boumans, Roelof M.J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393-408.
  • 92. de Souza Dias, Viviane, Pereira da Luz, Marta, M. Medero, Gabriela, Tarley Ferreira Nascimento, Diego, Nunes de Oliveira, Wellington, Rodrigues de Oliveira Merelles, Leonardo. (2018). Historical Streamflow Series Analysis Applied to Furnas HPP Reservoir Watershed Using the SWAT Model. Water, 10(4). Decision V/6 of the Conference of the Parties to the Convention on Biological Diversity. Fifth Ordinary Meeting of the Conference of the Parties to the Convention on Biological Diversity, 15-26 May 2000, Nairobi, Kenya. https://www.cbd.int/decisions/cop/?m=cop-05, dostęp 27. 12.2018.
  • 93. DEFRA, Department for Environmental Food and Rura l Affairs, 2011 : Water for life. www.official¬-documents. gov. Uk
  • 94. DeFries, R. i Eshleman, K. . (2004). Land-use change and hydrologic processes: a major focus for the future. Hydrological Processes, 18(11), 2183-2186.
  • 95. Degórski M., (2008). Postrzeganie rozwiązań zrównoważonego rozwoju w kontekście rosnącej świadomości ekologicznej ludności na przykładzie wybranych gmin i miast obszaru metropolitarnego Warszawy. [W:] E. Rydz, A. Kowalak (red.) Świadomość ekologiczna a rozwój regionalny w Europie Środkowo-Wschodniej. Wydawnictwo Naukowe Akademii Pomorskiej, Słupsk, s. 30-39.
  • 96. Devia, G.K., Ganasri, B.P., Dwarakish, G.S. (2015). A review on hydrological models. Aquatic Procedia, 4, 1001-1007. DHI (2017): MJKE HYDRO Basin. User Guide. DHI (2020): MTKE FLOOD. 1D-2D Modelling. User Manuał.
  • 97. Diersch, H.-J. (2014). FEFLOW. Springer Berlin Heidelberg.
  • 98. Doli, P. i Zhang, J. (2010). Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrology and Earth System Sciences, 14(5), 783-799.
  • 99. Domka L., ( 1998): Kryzys środowiska a edukacja dla ekorozwoju, Wydawnictwo Naukowe UAM, Poznań. ss. 156.
  • 100. Doom, N. (2016). Governance Experiments in Water Management: From Interests to Building Blocks. Science and engineering ethics, 22(3), 755-774.
  • 101. DraIle, D., Karst, N., Mulier, M., Vico, G., Thompson, S.E. (2017). Stochastic modeling of interannual variation of hydrologic variables. Geophysical Research Letters, 44( 14), 7285-7294.
  • 102. Draper, A.J., Jenkins, M.W., Kirby, K. W., Lund, J. R., Howitt, R.E. (2003). Economic-engineering optimization for California water management. Journal of water resources planning and management, 129(3), 155- 164.
  • 103. Duan, Q. (2003). Global optimization for watershed model calibration. Calibration of watershed model s, 6, 89-104.
  • 104. Duan, Q., Sorooshian, S., Gupta, V.K. ( 1994). Optima! use of the SCE-UA global optimization method for calibrating watershed models. Journal of hydrology, 158(3-4), 265-284.
  • 105. Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-T., Knowler, D .J., Leveque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., Sullivan, C.A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182.
  • 106. Durham, B., Rinck-Pfeiffer, S. and Guendert, D., (2002). Integrated water resource management through reuse and aquifer recharge. Desalination, 1 52, 333-338.
  • 107. Ebru, E., i Necati, A. (20 12). Homogeneity and trend analysis of hydrometeorological data of the Eastern Black Sea Region, Turkey. Journal of Water Resource and Protection. El-Zehairy, A.A., Lubczynski, M.W., Gurwin, J. (2018). Interactions of artificial lakes with groundwater applying a n integrated MODFLOW solution. Hydrogeology Journal, 26(1), 109- 132.
  • 108. Emerton, L. i Bos, E. (2004). Value. Counting ecosystems as an economic part of water. IUCN, Gland, Switzerland and Cambridge, UK, pp. 88.
  • 109. Eng K., Carlisie D. M., Wolock D.M. and Falcone J. A. (2013): Predicting the Likelihood of Altered Streamflows at Ungauged Rivers across the Conterminous United States. River Res. Applic. 29: 78 1-79 1 (2013). DOI: 10.1 002/rra.2565
  • 110. European Parliament resolution of 20 April 2012 on our life insurance, our natural capital : an EU biodiversity strategy to 2020 (2011/2307(INI)) http://www.europarl.europa.eu!sides/getDoc.do?pubRef=-//EP/([EXT+TA+P7-TA-2012-01 46+0+DOC+XML+VO//EN
  • 111. Falkenmark, M i Rockström, J. (2006). The ew Blue and Green Water Paradigm: Breaking New Ground for Water Resources Planning and Management. Journal of water resources planning and management, 132(3), 129- 132.
  • 112. Falter, D., Dung, v., Vorogushyn, S., Schroter, K., Hundecha, Y., Kreibich, H., Apel, H., Theisselmann, F., Merz, B. (201 6). Continuous, large-scale simulation model for flood risk assessments: proof-of-concept. Journal of Flood Risk Management 9(1), 3-21.
  • 113. Farber, S.C., Costanza, R., Wilson, M.A. (2002). Economic and ecological concepts for valuing ecosystem services. Ecological Economics, 41(3), 375-392.
  • 114. Farmer, W.H. i Vogel, R.M. (20 1 6). On the deterministic and stochastic use of hydrologic models. Water Resources Research, 52(7), 5619-5633.
  • 115. Fatichi, S., Vivoni E.R. Ogden, F.L., lvanov, V.Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M.D., J.H., Ebel, B., Jones, ., Kim, J., Mascaro, G., Niwonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., Tarboton, D. (2016). An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537, 45-60.
  • 116. Fenicia, F., Kavetski, D., Savenije, H.H.G. (2010). Elements of a flexible approach for eonceptual hydrological modeling: l. Motivation and theoretical development. Water Resources Research, 47(11).
  • 117. Fenicia, F., Kavetski, D., Savenije, H.H.G., Pfister, L. (2016). From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions. Water Resources Research, 52(2), 954-989.
  • 118. Findeisen W. (red.) (1985): Analiza systemowa - podstawy i metodologia. Praca zbiorowa pod redakcją W. Findeisena. Państwowe Wydawnictwo Naukowe. Warszawa (748 str.).
  • 119. Fioramonti, Doctor Lorenzo. (2014). How numbers rule the world: The use and abuse of statistics in global politics. Zed Books Ltd.
  • 120. Fiut S. I., (2009). Idea rozwoju zrównoważonego w perspektywie filozofii Henryka Skolimowskiego. Problemy Ekorozwoju/ Problems of Sustainable Development vol. 4, 02, s. 25-48
  • 121. Fiut, I. S. (2011). Przełom ekofilozoficzny w myśleniu według Zdzisławy Piątek. Problemy Ekorozwoju: studia filozoficzno-socjologiczne, 6(1), 95-106.
  • 122. Florke, M., Kynast, E., Barlund, I., Eisner, S., Wimmer, F., Alcamo, J. (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change, 23(1), 144-156.
  • 123. Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E.A., Kucharik, C.J., Manfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N. i Snyder, P.K. (2005). Global Consequences of Land Use. Science, 309(5734), 570-574.
  • 124. Fredericks, J. W., Labadie, J. W., Altenhofen, J. M. (1998). Decision support system for conjunctive stream-aquifer management. Journal of Water Resources Planning and Management, 1 24(2), 69-78.
  • 125. Fu, Guobin, Chen, Shulin, Liu, Changming, Shepard, Dawn. (2004). Hydro-Climatic Trends of the Yellow River Basin for the Last 50 Years. Climatic change, 65(1), 149- 178.
  • 126. Fulkerson, D.R. (1961 ). An out-of-kilter method for minimal-cost flow problems. Journal of the Society for Industrial and Applied Mathematics, 9(1), 18-27.
  • 127. Gandolfi, C., Soncini Sessa, R., Agostani, D., Castelletti, A.F., De Rigo, D., Facchi, A., Weber, E. (2007). IWRM in the Adda basin, northem Italy.
  • 128. Gao, H., Bohn, T. J., Podest, E., McDonald, K. C., Lettenmaier, D.P. (2011). On the causes of the shrinking of Lake Chad. Environmental Research Letters, 6(3), 034021.
  • 129. Gao, Hongkai, Hrachowitz, Markus, Sriwongsitanon, Nutchan art, Fenicia, Fabrizio, Gharari, Shervan, Savenije, Hubert H.G. (2016). Accounting for the influence of vegetation and landscape improves model transferability in a tropic al savannah region. Water Resources Research, 52 (10), 7999-8022.
  • 130. Garcia, L.E., (2008): Integrated water resources management: a 'small' step for conceptualists, a giant step for practitioners. International Journal of Water Resources Development, 24(1), 23-361
  • 131. Garrote, L. (2017). Managing water resources to adapt to climate change: facing uncertainty and scarcity in a changing context. Water Resources Management, 31(10), 2951 -2963.
  • 132. Gawor, L. (2012). Historiozoficzny aspekt ekofilozofii Henryka Skolimowskiego (Henryk Skolimowski's Ecophilosophy in the Aspect of Philosophy of History). Problemy Ekorozwoju-Problems of Sustainable Development, 7(1), 95-103.
  • 133. Gąsiorowski, D. i Szymkiewicz, R. (2020). Identification of Parameters Influencing the Accuracy of the Solution of the onlinear Muskingum Equation. Water Resources Management, 34(10), 3147-3164.
  • 134. Gąsiorowski, D. (2013). Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique.(Report). Acta Geophysica, 61(3), 668.
  • 135. Gharari, S., Hrachowitz, M., Fenicia, F., Savenije, H.H.G. (2011). Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central Buropean meso-scale catchment. Hydrology and Earth System Sciences, 15(11), 3275-3291.
  • 136. Gibson, S.A. i Pastemack, G.B. (2016). Selecting Between One-Dimension al and Two-Dimensional Hydrodynamic Models for Ecohydraulic Analysis. River Research and Applications, 32(6), 1365-1381.
  • 137. Gilles, D., Young, N., Schroeder, H., Piotrowski, J., Chang, Y.-J. (2012). Inundation Mapping Initiatives of the Towa Flood Center: Statewide Coverage and Detailed Urban Flooding Analysis. Water, 4, 85-106.
  • 138. Gillig, D., McCarl, B.A., Boadu, F. O. (2001). An economic, hydrologic, and environmental assessment of water management alternative plans for the south central Texas region. Journal oj Agricultural and Applied Economics, 33(1379-2016-113215), 59-78.
  • 139. Giupponi, C. i Gain, A.K. (2017). Integrated water resources management (TWRM) for climate change adaptation. Regional Environmental Change vol. 17, 1865-1867
  • 140. Gleeson, T. i Richter, B. (2018). How much groundwater can we pump and protect environment al flows through time? Presumptive standards for conjunctive management of aquifers and rivers. River research and applications, 34(1), 83-92.
  • 141. Godyń T., Indyk W., Jarząbek A., Owsiany M., Pusłowska-Tyszewska D., Sama S., Stańko R., Tyszewski S. (2011). Dobre praktyki gospodarowania wodami na obszarach cennych przyrodniczo. 1 39 s. Wydawnictwo RZGW Kraków.
  • 142. Goonetilleke, A. i Vithanage, M. (2017). Water resources management: Innovation and challenges in a changing world. Water, 9(4), 281
  • 143. Grodzka-Łukaszewska, M., Pawlak, Z., Sinicyn G. (2021). Spatial Distribution of the Water Exchange through River Cross-section- Measurements and the Numerical Model. Archives of Environmental Protection 47.1 69-79. Web.
  • 144. Grygoruk, M., Batelaan, 0., Mirosław-Świątek, D., Szatyłowicz, J., Okruszko, T. (20 1 4). Evapotranspiration of bush encroachments on a temperate mire meadow- A nonlinear function of landscape composition and groundwater flow. Ecological Engineering, 73, 598-609.
  • 145. Gupta, H., Kling, H., Yilmaz, K., Martinez, G.F. (2009). Decomposition of the mean squared error and SE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377, 80-91.
  • 146. Gupta, Hoshin V., C l ark, Marryn P., Vrugt, Jasper A., Abramowitz, Gab, Ye, Ming. (2012). Towards a comprehensive assessment of model structural adequacy. Water Resources Research, 48(8).
  • 147. Gurwin, J. (2006). Numeryczny model filtracji i transportu masy w wodach podziemnych rejonu składowiska odpadów Jelczu-Laskowicach. Geologos, vol. l O, 75-90.
  • 148. Gurwin, J. (2010). Ocena odnawialności struktur wodonośnych bloku przedsudeckiego : integracja danych monitoringowych i GIS/RS z numerycznymi modelami filtracji. Acta Universitatis Wratislaviensis. Hydrogeologia. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego.
  • 149. Gurwin, J. (2016). Problematyka schematyzacji na modelu złożonych warunków hydrostrukturalnych kredowego zbiornika wód podziemnych. Pages 33-44.
  • 150. GUS (2020): bdl.stat.gov.pl, odwiedzone 24.03.2021
  • 151. GUS (2020): Rocznik Ochrona środowiska 2020, Główny Urząd Statystyczny, ISSN 0867-3217, stat.gov.pl, odwiedzone 24.03.2021
  • 152. Guse, B., Kail, J., Radinger, J., Schroder, M., Kiesel, J., Hering, D., Wolter C., Fohrer, N. (2015). Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Science of the Total Environment, 533, 542-556.
  • 153. GWP (2000): Integrated Water Resources Management. TAC Background Papers o. 4. Stockholm. GWP (2003): Water Management and Ecosystems: Living with Change. TAC Background Papers No 9. Sweden.
  • 154. GWP (2013): The Economic Value of Moving Toward a More Water Secure World. TAC Background Papers No 1 8. Sweden.
  • 155. GWP (2015): Integrated Water Resources Management in Central and Eastern Europe: IWRM vs EU Water Framework Directive. Technical Focus Paper. Sweden.
  • 156. GWP (2016): Increasing Water Security: the Key to lmplementing the Sustainable Development Goals. TAC Background Papers No 22.
  • 157. Haasnoot, M., i Middelkoop, H. (2012). A history of futures: a review of scenario use in water policy studies in the Netherlands. Environmental science & policy, 19, 108-120.
  • 158. Haghnegahdar, Amin, Tolson, Bryan A., Craig, James R., Paya, Karol T. (2015). Assessing the performance of a semi-distributed hydrological model under various watershed discretization schemes. Hydrological Processes, 29(18), 4018-4031.
  • 159. Haines-Young, R. i Potschin M.B., (2018): Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. www.cices.eu
  • 160. Hall, Jim W, Mortazavi-Naeini, Mohammad, Borgomeo, Edoardo, Baker, Bill, Gavin, Helen, Gough, Meyrick, Harou, Julien J, Hunt, Douglas, Lambert, Chris, Piper, Ben, Richardson, Nathan, Watts, Glenn. (2020). Risk-based water resources planning in practice: a blueprint for the water industry in England. Waler and environment journal : WEJ, 34(3), 441-454.
  • 161. Hanemann, M. (2005). The value of water. Manuscript, University of California at Berkeley. Online at: http://are. berkeley. edu/courses/EEP 162/spring05/valuewater. Pdf
  • 162. Harbaugh A. W., Banta E.R., Hill M.C., McDonald M.G., (2000): MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-File Report 2000-92
  • 163. Harbaugh, A. W., (2005) MODFLOW-2005, the U.S. Geological Survey Modular Ground-water Model - the Ground-water Flow Process U.S. Geological Survey Techniques and Methods (2005) 6-A16
  • 164. Hargreaves, G.H. i Samani, Z . A . (1985). Reference crop evapotranspiration from temperature. Applied engineering in agriculture, 1 (2), 96-99.
  • 165. Hashimoto, T., Stedinger, J R., Loucks, D.P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water resources research, 1 8(1 ), 1 4-20.
  • 166. Hauer, C, Unfer, G, Tritthart, M, Habersack, H. (2011). Effects of stream channel morphology, transport processes and effective discharge on salmonid spawning habitats. Earth Surface Processes and Landforms, 36(5), 672-685.
  • 167. Hendriks, D.M.D., Kuijper, M.J.M., Van Ek, R. (2014). Groundwater impact on environmental flow needs of streams in sandy catchments in the Netherlands. Hydrological Sciences Journal, 59(3-4), 562-577.
  • 168. Herbich P, Kapuściński J., Nowicki K., Rodzoch A., (2013 ). Metodyka określania zasobów dyspozycyjnych wód podziemnych w obszarach bilansowych z uwzględnieniem potrzeb jednolitych bilansów wodnogospodarczych - Poradnik metodyczny, Ministerstwo Środowiska, ISBN 978-83-63296-02-5.
  • 169. Herbich P. Przytuła E., (2012). Bilans wodnogospodarczy wód podziemnych z uwzględnieniem oddziaływań z wodami powierzchniowymi w dorzeczu Wisły. Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warszawa.
  • 170. Herbich P., Dąbrowski s.; Nowakowski Cz., (2007). Wydzielenie rejonów wodnogospodarczych dla potrzeb zintegrowanego zarządzania zasobami wód podziemnych i powierzchniowych kraju. Państwowy Instytut Geologiczny Warszawa.
  • 171. Horne AC., O'Donnell EL., Webb JA., Stewardson MJ., Acreman M., Richter B., (20 1 7): Chapter l. The Environmental Water Management Cycle. [W:] Water for the Environment. From Policy and Science to Implementation and Management. Ed. : A.C. Horne, J.A. Webb, M.J. Stewardson, B. Richter, M. Acreman. Academic Press. Elsevier, s. 3-16 (758 stron).
  • 172. Hrachowitz, M. i Clark, M.P. (2017). HESS Opinions: The complementary merits of competing modelling philosophies in hydrology. Hydrology and Earth System Sciences, 21(8), 3953-3973.
  • 173. Hrachowitz, Markus, Fovet, Ophelie, Ruiz, Lament, Euser, T., Gharari, Shervan, Nijzink, R., Freer, J., Savenije, Hubert, Gascuel-Odoux, ChantaL (2014). Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 50(09), 7445-7469.
  • 174. Huisman, J.A., Breuer, L., Bormann, H., Bronstert, A., Croke, B.F.W., Frede, H.-G., Graff, T., Hubrechts, L., Jakeman, A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindstrom, G., Seibert, J., Sivapalan, M., Viney, .R., Wiłlems, P. (2009). Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) ITI: Scenario analysis. Advances in Water Resources, 32(2), 159- 1 70.
  • 175. Huthoff, F, Remo, Jwf, Pinter, . (2013). Improving flood preparedness using hydrodynamic levee-breach and inundation model ling: Middle Mississippi River, USA. Journal of Flood Risk Management, 8(1), 2-18.
  • 176. Hydroprojekt (1992). Metodyka jednolitych bilansów wodno-gospodarczych, Hydroprojekt-Warszawa Sp. z o.o., 1-98.
  • 177. Im, Sangjun, Kim, Hyeonjun, Kim, Chulgyum, Jang, Cheolhee. (2009). Assessing the impacts of land use changes on watershed hydrology using MIK.E SHE. Environmental Geology, 57(1), 231.
  • 178. IPBES (20 1 9): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the lntergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Diaz, J. Settele, E.S. Brondizio E.S., H.T. go, M. Gueze, J. Agard, A. Ameth, P. Balvanera, K.A. Brauman, S.H.M. Butchart, K.M.A. Chan, L.A. Garibaldi, K. Ichii, J. Liu, S.M. Subramanian, G.F. Midgley, P. Miloslavich, Z. Molmir, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y.J. Shin, U. Visseren-Hamakers, K.J. Wiłlis, and C. N. Zayas (eds.). IPBES secretariat, Bonn, Gerrnany. 56 pages.
  • 179. IPCC (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  • 180. Islam, M. M., Sallu, S., Hubacek, K., Paavola, J. (2014). Limits and barriers to adaptation to climate variability and change in Bangladeshi coastal fishing communities. Marine Policy, 43, 208-216.
  • 181. Schmidt, Jeremy i Matthews, Nathanial. (2017). Global Challenges in Water Governance: Environments, Economies, Societies. Global Challenges in Water Governance. Cham: Springer International Publishing AG.
  • 182. Jackson, R. B., Carpenter, S.R., Dahm, C. ., McKnight, D.M., Naiman, R.J., Postel, S. L., Running, S.W. (2001 ). Water in a changing world. Ecological applications, 11(4), 1027-1045.
  • 183. Jager, N.W, Challies, E., Kochskaemper, E., Newig, J., Benson, D., Blackstock, K., Collins, K., Emst, A., Evers, M., Feichtinger, J., Fritsch, 0., Gooch, G., Grund, W., Hedelin, B., Hernandez-Mora, N., Hueesker, F., Huitema, D., Irvine, K., Klinke, A., Lange, L., Loupsans, D., Lubell, M., Maganda, C., Matczak, P. , Pares, M., Saarikoski, H., Slavikova, L., van der Arend, S., von Korff, Y. (2016). Transforming European Water Governance? Participation and River Basin Management under the EU Water Framework Directive in 13 Member States. Water (Basel), 8(4), 156.
  • 184. Jahandideh-Tehrani, M., Helfer, F., Zhang, H., Jenkins, G., Yu, Y. (2020). Hydrodynamie modełling of a flood-prone tidal river using the ID model MIKE HYDRO River: calibration and sensitivity analysis. Environmental monitoring and assessment, 192(2), 97.
  • 185. Jekatierynczuk-Rudczyk, E. (2007). Strefa hyporeiczna, jej funkcjonowanie i znaczenie. Kosmos, 56(1-2), 181-196.
  • 186. Jenkins, M.W., Lund, J.R., Howitt, R. E., Draper, AJ., Msangi, S.M., Tanaka, S .K., Ritzema, R. S. & Marques, G.F. (2004). Optimization of California's water supply system: results and insights Journal of Water Resources Planning and Management, 130(4), 271-280.
  • 187. Johnston, R. i Smakhtin, V. (2014). Hydrological modeling of large river basins: how much is enough?. Water resources management, 28(1 0), 2695-2730.
  • 188. Jokiel P., (2017): Hydrologia Polski - uwarunkowania i Problemy (1), pp. 1-5. [W:] Hydrologia Polski. Ed.: Jokiel P., Marszelewski W., Pociask-Karteczka J. Wydawnictwo aukowe PWN SA. Warszawa 201 7.
  • 189. Jones P.D., Lister D.H., Wilby R.L., Kostopoulou E. (2006): Extended Riverflow Reconstructions for England and Wales, 1865-2002. International Journal of Climatology 26: 219-231. DOI: 10.1002/joc.1252
  • 190. Jönsson, B.L. (2004). Stakeholder participation as a tool for sustainable development in the Em River Basin. lnternational Journal of Wat er Resources Development, 20(3), 345-352.
  • 191. Kahya, E. i Kalayct, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1-4), 128-144.
  • 192. Kail, Jochem, Guse, Björn, Radinger, Johannes, Schröder, Maria, Kiesel, Jens, Kleinhans, Maarten, Schuurman, Filip, Fohrer, Nicola, Hering, Daniel, Wolter, Christian. (2015). A modelling framework to assess the effect of pressures on river abiotic habitat conditions and biota. PLoS One, 10(6), urn:issn: 1932-6203.
  • 193. Kang, Lin g, Zhou, Liwei, Zhang, Song. (2017). Parameter Estimation of Two lmproved Nonlinear Muskingum Models Considering the Latera l Flow Using a Hybrid Algorithm. Water Resources Management, 31(14), 4449-4467.
  • 194. Katusiime, J. i Schütt, B. (2020). Integrated Water Resources Management Approaches to Improve Water Resources Governance. Water, 12(12), 3424.
  • 195. Kawka, M. (201 6) Procesy transportu zanieczyszczeń w środowisku wodnym. [W:) M., Loga (red.) Wody pod presją. Witkom, Warszawa. 37-84
  • 196. Kennen, J.G., Riskin, M.L., Charles, E.G. (2014). Effects of stream flow reductions on aquatic macroinvertebrates: linking groundwater withdrawals and assemblage response in southrn New Jersey streams, USA. Hydrological Sciences Journal, 59(3-4), 545-561.
  • 197. Kiczko, A. i Mirosław-Świątek, D. (2018). Impact of uncertainty of flood plain digital terrain model on ID hydrodynamic flow calculation. Water, 10(10), 1308.
  • 198. Kiesel, J., Hering, D., Schmalz, B., Fohrer, N. 2009. A transdisciplinary approach for modelling macroinvertebrate habitats in Iowland streams. Pages 24-33 of IAHS-AISH publication, vol. 328. Wallingford: TAHS Press.
  • 199. Kiesel, J., Schmalz, B., Brown, G.L., Fohrer, N. (2013). Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment, channel and reach. Journal of Hydrology and Hydromechanics, 61(4), 334-346.
  • 200. Kiesel, J., Schröder, M., Hering, D., Schmalz, B., Hormann, G., Jahnig, S.C., Fohrer, N. (2015). A new model linking macroinvertebrate assemblages to habitat composition in rivers: development, sensitivity and univariate application. Fundamental and Applied Limnology, 186(1-2), 117-133.
  • 201. Kim T. J. i Wurbs R. A. (2011): Development of Monthly Naturalized FIow Using Water Rights Analysis Package (WRAP)-based Methods. KSCE Journal of Civil Engineering 15(7): 1299- 1307. DOI 10.1007/s12205-011-1184-y
  • 202. Kindler J. (1975) The Out-of-Kilter algorithm and some of its applications in water resources. International Institute for Applied Systems Analysis (II ASA) Working Paper WP-75-019.
  • 203. Kindler J., Iwanicki J., Kundzewicz Z. W., Matczak P., Miłaszewski R., Żelazo J. (2014): Zagrożenia instytucjonalne gospodarki wodnej i proponowane przeciwdziałania. Gospodarka wodna 10(790). T. LXXIV. p. 358-365.
  • 204. Kindler, J. (1998). Linking ecological and development objectives: trade-offs and imperatives. Ecological applications, 8(3), 591-600.
  • 205. Kindler, Janusz. (2000). Integrated Water Resources Management: The Meanders. Water International, 25(2), 312-319.
  • 206. King J.M., Tharme R. E., De Villiers M.S. (red.), (2000): Environmental Flow Assessments for Rivers: Manual for the Building Block Methodology. Water Research Commission Report TT 131/00. Pretoria, South Africa.
  • 207. Kollet, Stefan J. i Maxwell, Reed M. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parllel groundwater flow model. Advances in water resources, 29(7), 945-958.
  • 208. Kondracki, J. (2009). Geografia regionalna Polski, wyd. III uzup. PWN, Warszawa.
  • 209. Kostrzewa H. (1977). Weryfikacja kryteriów i wielkości przepływu nienaruszalnego dla rzek Polski, Materiały Badawcze IMGW, Seria: Gospodarka wodna i ochrona wód.
  • 210. Kot, A., Szymkiewicz, R., 2002. Uproszczone liniowe modele transformacji fali w korycie rzecznym. Monografie Komitetu Gospodarki Wodnej Polskiej Akademii Nauk (No 20). 20, 1-109.
  • 211. Koudstaal, R., Rijsbem1an, F., and Savenije, H., (1992). Water and sustainable development. [In: ] International Conference on Water and the Environment Development Issues for the 21st Century, Dublin, Ireland, 26-3 1 January 1992, Keynotepapers. World Meteorological Organization, ICWE Secretariat, Geneva, Switzerland.
  • 212. Kovalskyy, V., Roy, D., (20 1 3). The global availability of Landsat S TM and Landsat 7 ETMt land surface observations and implications for global 30 m Landsat data product generation. Remole Sens. Environ. 130, 280-293.
  • 213. Kumar, M., Duffy, C., Salvage, K. (2009). A Second-Order Accurate, Finite Volume-Based, Integrated Hydrologic Modeling (FIHM) Framework for Simulation of Surface and Subsurface Flow. Vadose Zone Journal - VADOSE ZONE J, 8(11).
  • 214. Kundu, Sananda, Khare, Deepak, Mondal, Arun. (2017). Past, present and future land use changes and their impact on water balance. Journal of Environmental Management, 197, 582-596.
  • 215. Kundzewicz Z. W., Iwanicki J., Kindler J., Gromiec M., Matczak P. (2014): Zagrożenia związane z wodą. Gospodarka wodna 10 (790). T. LXXIV. p. 353-358. Potrzebna jest wszechstronna analiza korzyści z działań dla ludzi zapewniającą minimum strat środowiskowych
  • 216. Kundzewicz, Z. W. i Kindler, J. (1995). Multiple criteria for evaluation of reliability aspects of water resource systems. JAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 231, 217-224.
  • 217. Kundzewicz, Z.W., Mata, L.J., Arnell, N.W., Doli, P., Jimenez, B., Miller, K., O ki, T., Sen, Z., Shiklomanov, I. (2008). The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal, 53(1), 3-10.
  • 218. Kundzewicz, Z,W., i Robson, A,J. 2004. Change detection in hydrological records - a review of the methodology / Revue methodologique de la detection de changements dans les chroniques hydrologiques. Hydrological Sciences Journal, 49(1), 7-19.
  • 219. Labadie J.W., (2006): MODSIM: Decision Support System for Integrated River Basin Management. 3rd International Congress on Environmental Modelling and Software - Burlington, Vermont, Usa - July 2006 https://scholarsarchive.byu.edu/iemssconference/ 2006/all/242/ dostęp: listopad 2020.
  • 220. Labadie J.W., (2010): MODSIM 8. 1: River Basin Management Decision Support System Tutorials and Example Networks. Colorado State University.
  • 221. Lai, Xijun, Jiang, Jiahu, Huang, Qun. (2013). Effects of the normai operation of the Three Gorges Reservoir on wetland inundation in Dongting Lake, China: a modelling study. Hydrological Sciences Journal, 58(7), 1467- 1477.
  • 222. Laizé, C. L. R., Acreman, M. C., Schneider, C., Dunbar, M.J., Houghton-Carr, H.A., Florke, M., Hannah, D.M. (2014). Projected flow alteration and ecological risk for pan-European rivers. River Research and Applications, 30(3), 299-314.
  • 223. Lambor, Julian. Podstawy gospodarki wodnej. Warszawa: Wydawnictwa Komunikacji i Łączności, (1965). Print. Instrukcje i Podręczniki - Państwowy Instytut Hydrologiczno-Meteorologiczny nr 60.
  • 224. Lamparter, Gabriele, Nobrega, Rodolfo Luiz Bezerra, Kovacs, Kristof, Amorim, Ricardo Santos, Gerold, Gerhard. (2018). Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Regional Environmental Change, 18(1), 91-103.
  • 225. Landrigan, P., Stegeman, J., Fleming, L., Allemand, D., Anderson, D., Backer, L., Brucker-Davis, F., Chevalier, N., Corra, L., Czerucka, D., Bottein, M-Y.D., Demeneix, B., Depledge, M., Deheyn, D., Dorrnan, C., Fenichel, P., Fisher, S., Gaili, F., Galgani, F., Gaze, W., Giuliano, L., Grandjean, P., Hahn, M., Hamdoun, A., Hess, P., Judson, B., Laborde, A., Mcglade, J., Mu, J., Mustapha, A., Neira, M., Noble, R., Pedrotti, M. L., Reddy, C., Rockltiv, J., Scharler, U., Shanmugam, H., Taghian, G., Van De Water, J., Vezzulli, L., Weihe, P., Zeka, A. Raps, H., Rampal, P. (2020). Human Health and ocean pollution. Annafs of global health, 86(1), 151.
  • 226. Laudato Si (2015): Encyklika Ojca Świętego Franciszka Poświęcona Trosce o Wspólny Dom http:// w2.vatican.va > pdf > encyclicals > documents
  • 227. Lee, E. H., Lee, H. M., Kim, J. H. (2018). Development and application of advanced Muskingum flood routing model considering continuous flow. Water, 10(6), 760.
  • 228. Lee, S., Yeo, I.-Y., Lang, M.W., Sadeghi, A.M., McCarty, G.W., Moglen, G.E., Evenson, G.R. (2018). Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Journal of Environmental Management, 223, 37-48.
  • 229. Lehner, B., Liennann, C. Reidy, Revenga, C., Vorosmarty, C., Fekete, B., Crouzet, P., Doli, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C, Rödel, R., Sindorf, N., Wisser, D. (2011). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9), 494-502.
  • 230. Letcher, R. A. i Jakeman, A .J. (2003). Application o f a n adaptive method for integrated assessment of water allocation issues in the Namoi River catchment, Australia. Integrated Assessment, 4(2), 73-89.
  • 231. Letcher, R.A., Croke, B.F., Jakeman, A.J. (2007). Integrated assessment modelling for water resource allocation and management: A generalised conceptual framework. Environmental Modelling & Software, 22(5), 733-742
  • 232. Letcher, R.A., Jakeman, A.J., Croke, B.F.W. (2004). Model development for integrated assessment of water allocation options. Water Resources Research, 40(5).
  • 233. Levy, S. (2003). Turbulence in the Klamath River Basin. BioScience, 53(4), 315-320.
  • 234. Liu, J., Li, J., Gao, Z., Yang, M., Qin, K., Yang, X. (20 1 6). Ecosystem services insights into water resources management in China: a case of Xi'an city. International journal of environmental research and public health, 13(12), 1169.
  • 235. Liu, Junguo, Zang, Chuanfu, Tian, Shiying, Liu, Jianguo Yang, Hong, Jia, Shaofeng, You, Liangzhi, Liu, Bo, Zhang, Miao. (2013). Water conservancy projects in China: Achievements, challenges and way forward. Global Environmental Change, 23(3) 633-643.
  • 236. Loucks, D.P. (2000). Sustainable water resources management. Wal er inlernalional, 25(1), 3-10.
  • 237. Loucks, D.P., van Beek E. with contributions by: Stedinger, Jery R.; Dijkman, Jozef P.M.; Villars, Monique T., (2017): Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications. Deltares, UNESCO-IHE, Springer. ISB 978-3-319-44234- 1. DOI: 10.1007/978-3-319-44234-1.
  • 238. Loucks, Daniel. (2020). From Analyses to Implementation and Innovation. Water, 12(4), 974.
  • 239. Acreman, M., Aldrick, J., Binnie, C., Black, A., Cowx, I., Dawson, H., Dunbar, M., Extence, C., Hannaford, J., Harby, A., Holmes, N., Jarritt, ., Old, G., Peirson, G., Webb, J., Wood P. (2009). Environmental flows from dams: the water framework directive. [In:] Proceedings of the lnstitution of Civil Engineers-Engineering Suslainability (vol. 162, No 1, pp. 1 3-22).
  • 240. Machiwal, D. i Jha, M.K. (2009). Time series analysis of hydrologic data for water resources planning and management: a review. Journal of Hydrology and Hydromechanics, 54(3), 237-257.
  • 241. Malmqvist, B. i Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental conservation, 134-153.
  • 242. Marcinkowski, P., i Grygoruk, M. (2017). Long-term downstream effects of a dam on a lawland river flow regime: Case study of the Upper Narew. Water, 9(10), 783.
  • 243. Marcinkowski, P., Piniewski M., Szcześniak M., Kardel I., Berezawski T., Okruszka T., Srinivasan, R., Vikhamar Schuler D., Kundzewicz Z. W. (2017) Hydrological modelling of the Vistula and Odra river basins using SWAT, Hydrological Sciences Journal, 62:8, 1266-1289, DOI: 10.1080/02626667.2017.1321842
  • 244. Marohasy, Jennifer i Abbot, John. (2015). Restoring native fish populations in Australia's Murray darling basin. lnternational Journal of Sustainable Development and Planning, 10(08), 487-498.
  • 245. Marques, G.F., Lund, J.R., Leu, M.R., Jenkins, M., Howitt, R., Harter, T., ... & Burke, S. (2006). Economically driven simulation of region al water systems: Friant-Kern, California. Journal of Water Resources Planning and Management, 132(6), 468-479.
  • 246. Marshall, G.R. (2013). Transaction costs, collective action and adaptation in managing complex social ecological systems. Ecological Economics, 88, 185-194.
  • 247. Martel, Jean-Luc, Brissette, François, Poulin, Annie. (2020). Impact of the spatial density of weather stations on the performance of distributed and lumped hydrological models. Canadian Wat er Resources Journal l Revue canadienne des ressources hydriques, 45(2), 158-171.
  • 248. Martinuzzi, S., Januchowski-Hartley, S.R., Pracheil, B.M., Mclntyre, P.B., Plantinga, A.J., Lewis, D.J., Radelotf, V. C. (2014). Threats and opportunities for freshwater conservation under future land use change scenarios in the United States. Global change biology, 20(1), 113-124.
  • 249. Mas-Pla, J, Font, E., Astui, 0., Menció, A., Rodriguez-Florit, A., Folch, A., Brusi, D., Perez-Paricio, A. (2012). Development of a stream-aquifer numerical flow model to assess river wat er management under water scarcity in a Mediterranean basin. Science of The Total Environment, 440, 204-218. Integrated modelling and monitoring at different river basin scales under global change.
  • 250. Maxwell, R. M., Condon, L. E., Kollet, S.J. (2015). A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3 . Geoscientific Model Development, 8(3), 923-937.
  • 251. Mayer, A. i Muñoz-Hemandez, A. (2009). Integrated water resources optimization models: an assessment of a multidisciplinary tool for sustainable water resources management strategies. Geography Compass, 3(3), 1176-1195.
  • 252. McDonald M.G., Harbaugh A.W., (1988). A modular three-dimensional finite-difference ground¬-water flow model, U.S.G.S. Open-File Report, Washington
  • 253. Mcshane, T., Hirsch, P., Tran, T., Songorwa, A. N., Kinzig, A., Monteferri, B., Mutekanga, D., Van Thang, H., Dammert, J.L., Pulgar-Vidal, M., Welch-Devine, M., Brosius, P. Coppolillo, P., O'Connor, S. (2011). Hard choices: Making trade-offs between biodiversity conservation and human well-being. Biological Conservation, 144(03), 966-972.
  • 254. MDBA - the Murray-Darling Basi n Authority (2011): The Living Murray story - one of Australia’s largest river restoration projects. MDBA publicarion number: 157/1 1. Canberra.
  • 255. MEA - Millennium Ecosystem Assessment, (2005a): Ecosystems and Human We/1-being: Synthesis. Island Press, Washington, DC.
  • 256. MEA - Millennium Ecosystem Assessment, (2005b): Living Beyond Our Means: Natural Assets and Human Well-being. Statement from the Board. Island Press, Washington, DC.
  • 257. MEA - Millennium Ecosystem Assessment, (2005c): Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC.
  • 258. MEA - Millennium Ecosystem Assessment, (2005d): Ecosystems and Human Well-being: Wetlands and Water Synthesis. World Resources lnstitute, Washington, DC.
  • 259. Mein, R.G. i Larson, C.L. (1973). Modeling infiltration during a steady rain. Water resources research, 9(2), 384-394.
  • 260. Michalak, J., Nawalany, M., Sadurski, A. (2011). Schematyzacja warunków hydrogeologicznych na potrzeby numerycznego modelowania przepływu w JCWPd. Państw. Inst. Geol., Warszawa.
  • 261. Micklin, P. (2016). The future Ara! Sea: hope and despair. Environmental Earth Sciences, 75(9), 844.
  • 262. Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D.P., Stouffer, R.J. (2008) Stationarity is dead: whither water management? Science 319:573-574
  • 263. Mirosław-Świątek, D., Kiczko, A., Szporak-Wasilewska, S., Grygoruk, M. (2017). Too wet and too dry? Uncertainty of DEM as a potential source of significant errors in a model-based water level assessment in riparian and mire ecosystems. Wetlands Ecology and Management, 25(5), 547-562.
  • 264. Mitosek, Marek (2014). Mechanika płynów w inżynierii i ochronie środowiska. Wyd. 3 popr. i rozszerz. edn. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • 265. Mohammad, Roohi (2020). Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint-Venant equation. Modeling Earth Systems and Environment, 6(2), 645-658.
  • 266. Monteith, J.L. (1965). Evaporation and environment. In Symposia o f t he society for experimental biology (vol. 19, pp. 205-234). Cambridge University Press (CUP) Cambridge.
  • 267. Moore, S. (2013). Issue Brief: Water Resource Issues, Policy and Politics in China. The Brookings Institute, 12.
  • 268. Moriasi, D. N. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900.
  • 269. Morrison J., Postel S.L., Gleick P. (1996). Sustainable Use of Water in the Lower Colorado River Basin. Report Pacific Institute for Studies in Development, Environment, and Security. Oakland. https://pacinst.org/wp-content/uploads/2013/02/sustainable_co_river_report3.pdf; dostęp 01.03.2019
  • 270. MPHP Mapa Podziału Hydrograficznego Polski w skali 1 : 10 000. (2010). IMGW
  • 271. MWH (2012). Flow Naturalisalion for Six Hawkes Bay Catchments: Tutaekuri, Waipawa, Tukipo, Tukituki, Maraetotara and Porangahau. Raport dla Hawke's Bay Regional Council.
  • 272. Nachlik E., Januchta-Szostak A., Kundzewicz Z. W., Okruszko T., Ramm K., Rosiek K., Wawer R., Zaleski J. (2021). Alert Wodny 8. Zintegrowane podejście w gospodarowaniu wodą. Gospodarka wodna 3 (867). T. LXXXI. p. 4-8.
  • 273. Nasta, Paolo, Palladino, Mario, Ursino, Nadia, Saracino, Antonio, Sommella, Angelo, Romano, Nunzio. (2017). Assessing long-term impact of land-use change on hydrological ecosystem functions in a Mediterranean up land agro-forestry catchment. Science of The Total Environment, 605-606, 1070-1082.
  • 274. Nearing, M.A., Liu, B.Y., Risse, L. M., Zhang, X. (1996). Curve urnbers and Green-Ampt Effective Hydraulic Conductivities. JA WRA Joumal of the American Water Resources Association, 32(1), 1 25-136.
  • 275. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J. R. (20 1 1 ). Soi/ and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
  • 276. Niehoff, Daniel, Fritsch, U ta, Bronstert, Axel. (2002). Land-use impacts on storm-runoFf generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. Journal of Hydrology, 267(1), 80-93. Advances in Flood Research.
  • 277. Nijzink, R.C., Samaniego, L., Mai, J., Kumar, R., Thober, S., Zink, M., Schiifer, D., Savenije, H.H.G., Hracbowitz, M. (201 6). The importance of topography-controlled sub-grid process heterogencity and semi-quantitative prior constraints in distributed hydrological models. Hydrology and Earth System Sciences, 20(3), 1151-1176.
  • 278. Nilsson, C., Reidy, C.A, Dynesius, M., Revenga, C. (2005). Fragmentation and Flow Regulation of the World's Large River Systems. Science (American Association for the Advancemenl of Science), 308(5720), 405-408. Nowicki M. (1991 ). Gospodarka wodna na tle ekologicznej polityki państwa. Gospodarka wodna 9 (525). T. LIV. p. 194- 196.
  • 279. OECD (2015). Water Resources Allocation: Sharing Risks and Opportunities. OECD Studies on Water
  • 280. Olmstead, S.M. (2010). The economics of managing scarce water resources. Review of Environmental Economics and Policy, 4(2), 179-198.
  • 281. Ozga-Zielińska M., Gądek W., Książyński K., Nachlik E., Szczepanek R. (2002). Mathematical model of rainfall-runoff transformation - WISTOO. W: Mathematical models of large watershed hydrology. Ed. V.P. Singh, D .K. Frevert. Water Resources Publications, LLC, Littleton, Colorado. 811-860.
  • 282. Ozga-Zielińska M. i Brzeziński J., (1997). Hydrologia stosowana. Wydawnictwo Naukowe PWN. Warszawa.
  • 283. Pahl-Wostl, C., Mostert, E., Tabara, D. (2008). The growing importance of social leaming in water resources management and sustainability science. Ecology and Society, 13(1): 24. Online.
  • 284. Parasiewicz, P. (2007). Using MesoHABSIM to develop reference habitat template and ecological management scenarios. River Research and Applications, 23(8), 924-932.
  • 285. Parson, E.A., Fisher-Van den, A. K. (1997). Integrated assessment models of global climate change. Annual Review of Energy and the Environment, 22(1), 589-628.
  • 286. Pellegrini, E., Bortolini, L., Defrancesco, E. (2019). Coordination and Participation Boards under the European Water Framework Directive: Different approaches used in some EU countries. Water, 11 (4), 833.
  • 287. Piątek, Z. (2008). Ekofilozofia. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.
  • 288. Pietrzyk-Kaszyńska A., Rechciński M., Olszańska A., Mączka K., Matczak P., Niedziałkowski K, Cent J, Peek B., Grodzińska-Jurczak M., (2016). Usługi ekosystemów na obszarach cennych przyrodniczo z perspektywy różnych grup interesariuszy. Instytut Ochrony Przyrody. Kraków 2016. http://files.iop.krakow.pl/ LINKAGE/Pietrzyk _A_ et_ a li_ 20 16 _Usługi_ ekosystemow.pdf (dostęp 19.09.2018).
  • 289. Piniewski M., Acreman M.C., Stratford J.C., Okruszko T., Giełczewski M., Teodorowicz M., Rycharski M., Oświecimska-Piasko Z., (2011), Estimation of Environmental Flows in Semi-Natural Lowland Rivers - the Narew River Basin Case Study. Pol. J. Environ. Stud. vol. 20, No 5, s. 1281-1293 .
  • 290. Piniewski, M., Marcinkowski, P., Koskiaho, J., Tattari, S. (2019). The effect of sampling frequency and strategy on water quality modelling driven by high-frequency monitoring data in a boreal catchment. Journal of Hydrology, 579, 124186.
  • 291. Piras, M., Mascaro, G., Deidda, R., Vivoni, E.R. (2014). Quantification of hydrologic impacts of climate change in a Mediterranean basin in Sardinia, Italy, through high-resolution simulations. Hydrology and Em·th System Sciences, 18(12), 5201-5217.
  • 292. Poff, .L. and J.K.H. Zimmerman. (2010). Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshwater Biology, 55(1), 1 94-205 doi: 10.1111/j.l 365-2427.2009.02272.x
  • 293. Poff, N.L., J.D. Allan, M.B. Bain, J. R. Karr, K. L. Presteegard, B.D. Richter, R. E. Sparks, and G.J.C. Stromberg. (1997). The natural flow regime. Bioscience 47:769-784. doi : 10.230711313099
  • 294. POLGEOL - PG POLGEOL (2000). Warunki korzystania z wód dorzecza Bugu Granicznego (GH/98-063). RZGW Warszawa.
  • 295. Porcher, Simon i Saussier, Stephane. (2018). Facing the Chalenges of Water Governance. Palgrave studies in water governance. Cham: Springer International Publishing AG.
  • 296. Poskrobko B. i Poskrobko T. (2012): Zarządzanie środowiskiem w Polsce. Polskie Wydawnictwo Ekonomiczne. Warszawa. ISBN: 978-83-208-2011-9. s. 1 1-37 (328 str.).
  • 297. Priestley, C.H.B. i Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.
  • 298. Pro-WODA - Pracownia Gospodarki Wodnej Pro-WODA, (2008): Metodyka opracowywania warunków korzystania z wód regionu wodnego oraz warunków korzystania z wód zlewni. KZGW.
  • 299. Pro-WODA - Pracownia Gospodarki Wodnej Pro-WODA, (2016). Opracowanie projektu warunków korzystania z wód zlewni Wieprzy. Opracowanie wykonane na zlecenie RZGW w Szczecinie przez Zespół autorski pod kierownictwem D. Pusłowskiej-Tyszewskiej. RZGW w Szczecinie.
  • 300. Przytula, E. (2015). Programy prac i dokumentacje hydrogeologiczne ustalające zasoby dyspozycyjne wód podziemnych na potrzeby przeprowadzania bilansów wodnogospodarczych oraz opracowania warunków korzystania z wód regionu wodnego i zlewni - założenia metodyczne, stan realizacji przedsięwzięcia. Przegląd Geologiczny, 63(10/2), 1027-1032.
  • 301. Pulido-Velazquez, M., Andreu, J., Sahuquillo, A. (2006). Economic optimization of conjunctive use of surface water and groundwater at the basin scale. Journal of Water Resources Planning and Management, 132(6), 454-467.
  • 302. Pusłowska D., Tyszewski S., Okruszko T., (1996). Kryteria oceny realizacji zadań zaopatrzenia w wodę użytkowników rolniczych, Konferencja naukowa: Problemy kształtowania środowiska obszarów wiejskich. Przegląd Naukowy Wydziału Melioracji i Inżynierii Środowiska, Zeszyt 11 , Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie, 313-322.
  • 303. Pusłowska-Tyszewska D. i Tyszewski S., (2014): Bilanse wodnogospodarcze na potrzeby opracowania warunków korzystania z wód zlewni rzecznych na przykładzie Jeziorki. [W:] Hydrologia w inżynierii i gospodarce wodnej, K., Banasik, L., Hejduk, E., Kaznowska (red.) tom I, nr XX, pp. 259-270.
  • 304. Pusłowska-Tyszewska, D., Dybkowska-Stefek, D., Relisko-Rybak, J. (2021). Analiza dostępności zasobów wód powierzchniowych w rejonie planowanego Kanału Śląskiego. Bilanse wodno gospodarcze wód powierzchniowych zlewni Rudy, Bierawki, Gostyni i Pszczynki. Gospodarka Wodna 2(21) s. 10-24.
  • 305. Pusłowska-Tyszewska, D., Rycharski, M. (2015). Wymagania wodne ekosystemów zależnych od wód jako podstawa określenia przepływów nienaruszalnych/środowiskowych. Część I: Koncepcja, w: Gospodarka Wodna, nr 12 (2015), s. 371 -376.
  • 306. Pusłowska-Tyszewska, D., Tyszewski, S., Duda, R., Kiejzik-Głowińska, M., Treichel, W., Nawalany, M. (2017). Bilans wodnogospodarczy wód powierzchniowych. W: D. Pusłowska-Tyszewska i S. Tyszewski (red.), Środowiskowe aspekty udostępniania gazu ze skał łupkowych. Gdańsk: Wydawnictwo Politechniki Gdańskiej, 45-76.
  • 307. Radczuk, L. (2008). Modelowanie procesów hydrologicznych w dorzeczu górnej i środkowej Odry. Wydawnictwo Uniwersytetu Przyrodniczego.
  • 308. Rahaman, M.M. i Varis, O. (2005). Integrated water resources management: evolution, prospects and future challenges. Sustainability: science, practice and policy, 1 (1), 15-21.
  • 309. Refsgaard, J.C. i Storm, B . (1996). Construction, Calibration, and Validation of Hydrological Models. W: Abbot, M.B. i Refsgaard, J.C. (Red.): Distributed Hydrologic Modeling, Kluwer Academic Publishers, Dordrecht, 41 -54.
  • 310. Renard B., Kavetski D., Kuczera G., Thyer M., Franks S. W. (2010). Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water Resources Research, 46(5). W05521, doi : 10.1029/2009WR008328.
  • 311. Richter, B.D., Baumgartner, J.V., Wigington, R. and Braun, D.P. (1997). How much water does a river need? Freshw. Biol. 37:23 1-249. doi: 10.1 046/j.1365-2427. 1997.00153.x
  • 312. Ringler, C., von Braun, J., Rosegrant, M.W. (2004). Water policy analysis for the Mekong River Basin. Water International, 29(1), 30-42.
  • 313. Romanowicz R.J., Nachlik E., Januchta-Szostak A., Kundzewicz Z.W., Żelaziński J. (2014). Zagrożenia powodziowe. Gospodarka wodna 10 (790). T. LXXIV. p. 366-372.
  • 314. Rosegrant, M.W, Ringler, C, McKinney, D.C, Cai, X, Keller, A, Donoso, G. (2000). Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin. Agricultural Economics, 24(1), 33-46.
  • 315. Rozporządzenie Nr 3/2014 Dyrektora Regionalnego Zarządu Gospodarki Wodnej w Szczecinie z dnia 3 czerwca 2014 r. w sprawie ustalenia warunków korzystania z wód regionu wodnego Dolnej Odry i Przymorza Zachodniego. Dz. Urz. Woj. Zachodniopomorskiego 2014.243 1 Ogłoszony: 2014- 06-09; Dz. Urz. Woj. Łubuskiego 2014. 1139 Ogłoszony: 20 14-06-03; Dz. Urz. Woj. Pomorskiego 201 4.2237 Ogłoszony: 2014-06-26
  • 316. Rozporządzenie, (2014). Rozporządzenie Ministra Środowiska z dnia 8 maja 20 14 r. w sprawie dokumentacji hydrogeologicznej i dokumentacji geologiczno-inżynierskiej. Dz.U. 20 14 poz. 596.
  • 317. Rutkowska, Agnieszka, Willems, Patrick, Onyutha, Charles, Młocek, Wojciech. (2017) Temporai and spatial variability of extreme river flow quantiles in the Upper Vistula River basin, Poland. Hydrological Processes, 31(7), 1510-1526.
  • 318. Sadoff, C. W., Whittington, D., Grey, D. (2003). Africa's international rivers: an economic perspective. Directions in Developmenl. World Bank. https://openknowledge. worldbank.org/handle/10986/15175.
  • 319. Sahin V. i M .J. Hall, (1996). The effects of afforestation and deforestation on water yields. Journal of Hydrology 178 293-309.
  • 320. Samaniego, Luis, Ku mar, Rohini, Attinger, Sabine. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Wate1· Resources Research, 46(5).
  • 321. Savenije, H.H.G. i Hrachowitz, M. (2017). HESS Opinions "Catchments as meta-organisms -a new blueprint for hydrological modelling". Hydrology and Earth System Sciences, 21(2), 1107-1116.
  • 322. Schiff, J. S. (2010). Integrated Water Resources Management: A Theoretical Exploration of t he Implementation Gap between the Developed and Developing Worlds.
  • 323. Schoups, G., Addams, C. L., Minjares, J. L., Gorelick, S.M. (2006). Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico. Wat er Resources Research, 42(10).
  • 324. Schulze, R. E. (2006). Some foci of integrated water resources management in the "South" which are oft-forgotten by the "North": a perspective from southern Africa. In Integrated Assessmenl of Water Resources and Global Change (pp. 269-294). Springer, Dordrecht.
  • 325. Sechi, G.M. i Sulis, A. (2009). Water System Management through a Mixed Optimization-Simulation Approach. Journal of water resources planning and management, 135(3), 160-170.
  • 326. Secretariat of the Convention on Biological Diversity, (2004): The Ecosystem Approach (CBD Guidelines) Montreal: Secretariat of the Convention on Biological Diversity 50 p. SET - Stockholm Environment Institute. (2015).
  • 327. WEAP Water Evaluation and Planning System. User Guide for WEAP 2015.
  • 328. Seiller, G., Anctil, F., Perrin, C. (2012). Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions. Hydrology and Earth System Sciences, 16(4), 1171-1189.
  • 329. Sgobbi, A. i Fraviga, G. (2006). Govrnance and water management: progress and tools in Mediterranean countries (December 2006). FEEM Working Paper No 151.06, http://dx.doi.org/10.2139/ ssm.951461
  • 330. Sherrman L.K., (1932): Streamflow from Rainfall by Unit-Graph Method. Eng. News Record, 108, 501-505.
  • 331. Shively, D.D. i Mueller, G. (2010). Montana's Clark Fork River Basin Task Force: A Vehicle for Integrated Water Resources Management?. Environmental management, 46(5), 671 -684.
  • 332. Singh, V.P. (200 l ). Kinematic wave modelling in water resources: a historical perspective. Hydrological Processes, 1 5(4), 67 1-706.
  • 333. Singh, Vijay. (2017). Kinematic Wave Theory of Overland Flow. Water Resources Management, 31(10), 3147-3160.
  • 334. Sitek, S. (2017). Modelowanie wód podziemnych na terenach górniczych z wykorzystaniem oprogramowania FEFLOW. Przegląd Geologiczny, 65(11/3), 1451-1459.
  • 335. Sivapalan, M., Zhang, L., Vertessy, R., Blöschl, G. (2003). Downward approach to hydrological prediction. Hydrological Processes, 17(11), 2099-2099.
  • 336. Skolimowski, H. (1999). Wizje nowego millenium. Wydawnictwo EJB. Skolimowski, H., i Górecki, J.K. (2003). Zielone oko Kosmosu: wokół ekofilozofii w rozmowie i esejach. Wrocław. Atla 2. ss. 226.
  • 337. Sloan, P., i Moore, I. (1984). Modeling subsurface storrnflow on steeply sloping forested watersheds. Water Resources Research, 20(12), 1815-1822.
  • 338. Słota, H. (1997). Zarządzanie Systemami Gospodarki Wodnej. Warszawa: IM i GW, 1997. Atlasy i Monografie - Instytut Meteorologii i Gospodarki Wodnej.
  • 339. Small, N., Munday, M., Durance, I. (2017). The challenge of valuing ecosystem services that have no material benefits. Global Environmental Change, 44, 57-67.
  • 340. Soczyńska U. (red.) (1997): Hydrologia dynamiczna, Wyd. Nauk. PWN, Warszawa. 412 s.
  • 341. Son, K. i Sivapalan, M. (2007). lmproving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data. Water resources research, 43(1).
  • 342. Steffen, W., Ricbardson, K., Rockstrom, J., Comell, S,E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L. M., Ramanathan, V., Reyers, B., Sorlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223).
  • 343. Stewardson MJ., Acreman M., Costelloe JF., Fletcher TD., Fowler KJA., Horne AC., Liu G., McClain ME., Peel MC., (2017): Chapter 3. Understanding Hydrological Alteration. W: Water for the Environment. From Policy and Science to lmplementation and Management. Ed. : A.C. Home, J. A. Webb, M. J. Stewardson, B. Richter, M. Acreman. Academic Press. Elsevier, s. 37-64 (758 stron).
  • 344. Stonestrom, David A., Scanlon, Bridget R., Zhang, Lu. (2009). lntroduction to special section on lmpacts of Land Use Change on Water Resources. Water Resources Research, 45(7).
  • 345. Streetly, M.J., Bradley, D.C., Streetly, H.R., Young, C., Cadman, D., Banham, A. (2014). Bringing groundwater models to LTFE: a new way to assess water resource management options. Hydrological Sciences Journal, 59(3-4), 578-593.
  • 346. Stuopis, A., Mokrik, R., Gregorauskas, M. Marcinonis A. (2017). Assessment of groundwater resources of Quaternary aquifer system in concordance with avoidable negative impact on geoenvironment, south-eastern part of Lithuania. Water Resour 44, 52-60.
  • 347. Sulis, A. i Sechi, G.M. (2013). Comparison of generic simulation models for water resource systems. Environmental modelling & software, 40, 214-225.
  • 348. Swatuk, L. A. (2008). A political economy of water in Southern Africa. Water Alternatives, 1(1), 24.
  • 349. Szymkiewicz, R. i Gąsiorowski, D. (2010). Podstawy hydrologii dynamicznej (pp. 1-290). WNT.
  • 350. Szymkiewicz, R., (2000): Modelowanie matematyczne przepływów w rzekach i kanałach. Wydawnictwo Naukowe PWN, Warszawa.
  • 351. Takayanagi, Norio, Mizutani, Yukihiro, Loucks, Daniel P. (2011). Stakeholder Consensus Building in Multiobjective Environments. Journal of Water Resources Planning and Management, 137(3), 293-303.
  • 352. TEEB - The Economics of Ecosystems and Biodiversity 2010: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB http://www.teebweb.org/publication/
  • 353. Teotónio, Carla, Rodriguez, Miguel, Roebeling, Peter, Fortes, Patricia. (2020). Water competition through the 'water-energy' nexus: Assessing the economic impacts of climate change in a Mediterranean context. Energy Economics, 85, 104539.
  • 354. Tyszewski S., Okruszko T., Pusłowska D. (1995). Zasady gospodarowania zasobami wodnymi doliny w sposób zaspokajający potrzeby ekosystemów chronionych i rolniczych. Opracowanie wykonane w ramach Grantu KBN pt. " Zasady gospodarowania zasobami wodnymi doliny w sposób zaspokajający potrzeby ekosystemów chronionych i rolniczych", Warszawa.
  • 355. Tyszewski S., Okruszka T., Pusłowska D. (1996). Propozycja metodyki określania sposobu wykorzystania zasobów wodnych zlewni o szczególnych walorach przyrodniczych na przykładzie Górnej Narwi - część I i II, Materiały VII Seminarium Naukowego pt. Zasady racjonalnej gospodarki wody, cykl Ochrona jakości i zasobów wód. Zakopane.
  • 356. UNEP - United Nations Environment Programme, (2012). The UN-Water Status Report on the Application of Integrated Approaches to Water Resources Management. United Nations Environment Programme, Nairobi.
  • 357. UNESCO (2006). Wat er a shared responsibi/ity. The United Nations World Water Development Report 2
  • 358. UNWWAP - United Nations World Water Assessment Programme, (2015): The United Nations World Water Development Report 2015: Walet for a Sustoinable World. Paris, UNESCO.
  • 359. Vallner, L. (2003). Hydrogeological model of Estonia and its applications. Proc Estonian Acad Sci Geol 52(3): 179-192.
  • 360. van Koppen, B., Schreiner, B. (2014). Moving beyond integrated water resource management: developmental water management in South Africa. International Journal of Water Resources Development, 30(3), 543-558.
  • 361. Van Liew, M.W., Arnold, J. G., Bosch, D.D. (2005). Problems and potential of autocalibrating a hydrologic model. Transactions of the ASAE, 48(3), 1025-1040.
  • 362. van Loon, A. H., Schot, P.P., Griffioen, J., Bierkens, M.F.P., Batelaan, 0., Wassen, M.J . (2009). Throughtlow as a determining factor for habitat contiguity in a near-natural fen. Journal of Hydrology, 379(1), 30-40.
  • 363. Veldkamp, T., Wada, Y., Aerts, J.C.J.H. Döll, J. P., Gosling, S. ., Liu, J., Masaki, Y., Oki, T., Ostberg, S., Pokhrel, Y., Satoh, Y., Kim, H., Ward P. J., (2017): Water scarcity hotspots travel downstream due to hum a n interventions in the 20th and 21st century. Nat Commun 8, 15697 (2017). https:// doi.org/10.1038/ncomms15697
  • 364. Verburg, P.H., Overmars, KP., (2009). Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Land c. Ecol. 24 (9), 1167e1181. http://dx.doi.org/l 0. 1 007/s l 0980-009-9355-7.
  • 365. Virbulis, Janis, Bethers, Uldis, Saks, Tomas, Sennikovs, Juris, Timuhins, Andrej s. (2013). Hydrogeological model of the Baltic Artesian Basin. Hydrogeology Journal, 21(4), 845-862.
  • 366. Vogel, R.M. (2017). Stochastic watershed models for hydrologic risk management. Water Security, l, 28-35.
  • 367. Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289(5477), 284-288.
  • 368. Vörösmarty, CJ., Mclntyre, PB, Gessner, MO, Dudgeon, D, Prusevich, A, Green, P, Glidden, S, Bunn, SE, Sullivan, CA, Reidy Liermann, C and Davies, PM (2010): Global threats to human water security and river biodiversity, Nature, vol. 467, No, 7315, pp. 555-561.
  • 369. Wada, Y., Florke, M., Hanasaki, ., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T.H., Yillia, P., Ringler, C., Burek, P., Wiberg, D. (2016). Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 9(1), 175-222.
  • 370. Wagner, P.D., Bhallamudi, S.M., Narasimhan, B., Kantakumar, L.N., Sudheer, K.P., Kumar, S., ... & Fiener, P. (2016). Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Science of the Total Environment, 539, 153- 164.
  • 371. Wagner, P.D., Bhallamudi, S.M., Narasim ban, B., Kumar, S., Fohrer, ., Fiener, P. (2019). Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environmental Modelling & Software, 122, 103987.
  • 372. Ward, F.A., Booker, J. F., Michelsen, A.M. (2006). Integrated economic, hydrologic, and institutional analysis of policy responses to mitigate drought impacts in Rio Gran de Bas in. Journal of Water Resources Planning and Management, 132(6), 488-502.
  • 373. Watkins Jr, D.W. i Moser, D.A. (2006). Economic-based optimization of Panama Canal system operations. Journal of Water Resources Planning and Management, 132(6), 503-512.
  • 374. Watts, G. 1996. Ely Ouse - Essex Water Resources Investigations, Scoping study for Denver naturalisation; Environment Agency Anglian Region, International Library & Information Service.
  • 375. Weaver, C.P., Lempert, R.J., Brown, C., Hall, J.A., Revell, D., Sarewitz, D. (2013). Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. Wiley Interdisciplinary Reviews: Climate Change, 4(1), 39-60.
  • 376. Węglarczyk, S. (2010). Statystyka w inżynierii środowiska: podręcznik dla studentów szkól wyższych. Wydaw. PK, 20 1 0. ISBN 978-83-7242-539-3. 375 s.
  • 377. WFD CIS (2015a). Ecological flows in the implementation of the Water Framework Directive. Guidance document n° 31. Technical Report - 2015 - 086. European Union.
  • 378. WFD CIS (2015b). Guidance document on the application of water balances for supporting the implementation of the WFD. Guidance document n° 34. Technical Report - 20 15-090. European Union.
  • 379. White, G.F. (1998). Reflections on the 50-year intemational search for integrated water management. Water Policy, 1(1): 21-27.
  • 380. Wilby, R.L., Clifford, N .J., De Luca, P., Harrigan, S., Hillier, J.K., Hodgkins, R., Johnson M.F., Matthews T.K.R., Murphy C., Noone S.J., Parry S., Prudhomme C., Rice S.P., Slater L.J., Smith K.A., Wood P.J., (2017). The 'dirty dozen' of freshwater science: detecting then reconciling hydrological data biases and errors. WIREs Water 2017, 4(3). e1209.
  • 381. Wilhite D.A., World Meteorological Organization, Global Water Partnership, and National Drought Miligation Center (2014). National Drought Management Policy Guidelines: A Template for Action. Drought Mitigation Center Faculty Publications. 83. http://digitalcommons.unl.edu/droughtfacpub/83
  • 382. Willems, P., Mora, D., Vansteenkiste, T., Taye, M.T., Van Steenbergen, N. (2014). Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes-Part 2: Intercomparison of models and calibration approaches. Journal of Hydrology, 510, 591-609.
  • 383. Willems, Patrick, Mora, Diego, Vansteenkiste, Thomas, Taye, Meron Teferi, Steenbergen, Niels Van. (2014). Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes - Part 2: Intercomparison of models and calibration approaches. Journal of Hydrology, 510, 591-609.
  • 384. Williams, J. (1969). Flood Routing With Variable Travel Time or Variable Storage Coefficients. Transactions of the ASA BE, 12, 100-0103 .
  • 385. Witowski K., Filipkowski A., Gromiec M.J. (2008). Obliczanie przepływu nienaruszalnego. Poradnik. Instytut Meteorologii i Gospodarki Wodnej. Seria: Monografie Instytutu Meteorologii i Gospodarki Wodnej. Warszawa. ISBN 978-83-61102-05-2.
  • 386. WL Delft Hydraulics (2004): RIBASIM Version 6.33. User Manual.
  • 387. WMO (2012) Technical Material for Water Resources Assessment WMO- No. 1095; Technical Report Series- No. 02.
  • 388. WMO 2008. Manual on Low-flow Estimation and Prediction. Operational Hydrology Report No. 50. WMO-No. 1029.
  • 389. Wojas, W. i Tyszewski, S. (2013). Some examples comparing static and dynamic network approaches in water resources allocation models for the rivers of high instability of flows. Journal of Water and Land Development, 18(9), 21-27.
  • 390. World Economic Forum (WEF), (2015). Global Risks 2015, 10th edition. https://reports.weforum. org/global-risks-2015; dostęp 22.05.2019.
  • 391. World Economic Forum (WEF), (2017). The Global Risks Report 2017, 12th edition. https://www. wefomm.org/reports/the-global-risks-report-20 1 7; dostęp 22.05.2019.
  • 392. World Economic Forum (WEF), (2018). The Global Risks Report 2018, 13th edition. https://www. weforum.org/reports/the-global-risks-report-20 1 8; dostęp 22.05.2019
  • 393. World Economic Forum (WEF), (2019). The Global Risks Report 2019, 14th edition. https://www. weforum.org/reports/the-global-risks-report-20 1 9; dostęp 22.05.2019
  • 394. World Economic Forum (WEF), (2020). The Global Risks Report 2020. Insight Report. 15th edition. https://www.weforum.org/reports/the-global-risks-report-2020 dostęp 21.02.2020
  • 395. Wurbs R. (2006). Methods for developing naturalized monthly flows at gaged and ungaged sites. Journal of Hydrologic Engineering, vol. 11, Issue 1, pp. 55-64.
  • 396. Wurbs, R. (2012). Water rights analysis package (WRAP) modeling system reference manual. Texas Water Resources Institute.
  • 397. WWAP (Wold Water Assessment Programme). (2012). The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. Paris, UNESCO.
  • 398. WWF, (2014). Living Planet Report 2014: species and spaces, people and places. R., McLellan, L., Tyengar, B. Jeffries and Oerlemans, N. (Ed). 180pp. WWF, Gland, Switzerland.
  • 399. Xia, X., Liang, Q., Min g, X., Hou, J. (2017). An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water resources research, 53(5), 3730-3759.
  • 400. Yin, Y., Tang, Q., Li u, X., Zhang, X. (2017). Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River bas in. Hydrology and Earth System Sciences, 2 1(2), 791-804.
  • 401. Yu, Y., Pi, Y., Yu, X., Ta, Z., Sun, L., Disse, M., Zeng, F., Li, Y., Chen, X., Yu, R. (2019). Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. Journal of Arid Land, 11(1), 1-14.
  • 402. Zaleski J., Chudziński P., Degórski M., Januchta-Szostak A., Konieczny R., Kundzewicz Z. W., Kutek K., Majewski W., Nachlik E. (2021). Alert Wodny 6. Woda w planowaniu przestrzennym. Gospodarka wodna 2 (866). T. LXXXI. p. 7-9.
  • 403. Zavialov, P.O., Kostianoy, A.G., Emelianov, S. V. , Ni, A.A., Ishniyazov, D., Khan, V.M., Kudyshkin, T. V. (2003). Hydrographic survey in the dying Aral Sea. Geophysical Research Lellers, 30(13).
  • 404. Zdechlik R., Kulma R. (2009): Kilka uwag o modelowaniu filtracji wód podziemnych. Biul. Państw. Inst. Geol., 436: 569-574.
  • 405. Zdechlik, Robert i Kałuża, Agnieszka. 01 Dec. (2019). The FEM model of groundwater circulation in the vicinity of the Świniarsko intake, near Nowy Sącz (Poland). Gelogos, 25(3), 255-262.
  • 406. Zehe, E., Lee, H., Sivapalan, M. (2006). Dynamical process upscaling for deriving catchment scale state variables and constitutive relations for meso-scale process models. Hydrology and Earth System Sciences, 10(6), 981-996.
  • 407. Zgromadzenie Ogólne ONZ (2015). Przekształcamy nasz świat: Agenda na rzecz zrównoważonego rozwoju 2030. A/R.ES/70/1. https://www.un.org.pl/ Dostęp 13.08.2018
  • 408. Zhang, Hong, Jin, Gui, Yu, Yan. (2018). Review of River Basin Water Resource Management in China. Water, 10(4).
  • 409. Zhang, X.H., Ishidaira, H., Takeuchi, K., Xu, Z.X., Zhang, X. W. (2004). An approach to inundation simulation in large river basins using the triangle finite difference method. Journal of Environmental lnformatics, 3(1), 51-63.
  • 410. Ziv, Guy, Baran, Eric, Nam, So, Rodriguez-Iturbe, Ignacio, Levin, Simon A. (2012a). Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences, 109(15), 5609-5614.
  • 411. Żelazo J. (1994). Inwestycje wodne a ochrona środowiska. Gospodarka wodna 7 (547). T. LVI. p. 146-149.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c0dd5560-fb9f-47b0-849e-2e2c65e516eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.