Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 42, Fasc. 2 | 195--217
Tytuł artykułu

A limit theorem for the last exit time over a moving nonlinear boundary for a Gaussian process

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove the convergence of the distribution of the scaled last exit time over a slowly moving nonlinear boundary for a class of Gaussian stationary processes. The limit is a double exponential (Gumbel) distribution.
Wydawca

Rocznik
Strony
195--217
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
Bibliografia
  • 1. F. Aurzada, V. Betz and M. Lifshits, Breaking a chain of interacting Brownian particles: a Gumbel limit theorem, Theor. Probab. Appl. 66 (2021), 184-208.
  • 2. F. Aurzada, V. Betz and M. Lifshits, Universal break law for a class of models of polymer rupture, J. Phys. A 54 (2021), 28 pp.
  • 3. S. M. Berman, Limit theorems for the maximum term in stationary sequences, Ann. Math. Statist. 35 (1964), 502-516.
  • 4. K. Dębicki, E. Hashorva and L. Ji, Parisian ruin of self-similar gaussian risk processes, J.A Appl. Probab. 52 (2015), 688-702.
  • 5. K. Dębicki and P. Liu, The time of ultimate recovery in Gaussian risk model, Extremes 22 (2019), 499-521.
  • 6. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 2nd ed., Krieger, Malabar, FL, 1987.
  • 7. J. Hüsler and V. I. Piterbarg, A limit theorem for the time of ruin in a Gaussian ruin problem, Stochastic Process. Appl. 118 (2008), 2014-2021.
  • 8. J. Hüsler and Y. Zhang, On first and last ruin times of Gaussian processes, Statist. Probab. Lett. 78 (2008), 1230-1235.
  • 9. N. Karagodin and M. Lifshits, On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process, Theor. Probab. Appl. 66 (2021), 337-347.
  • 10. M. Lifshits, Gaussian Random Functions, Math. Appl. 322, Kluwer, Dordrecht, 1995.
  • 11. Z. Michna, Remarks on Pickandsâ theorem, Probab. Math. Statist. 37 (2017), 373-393.
  • 12. Ch. Paroissin and L. Rabehasaina, First and last passage times of spectrally positive Lévy processes with application to reliability, Methodol. Comput. Appl. Probab. 17 (2015), 351-372.
  • 13. J. Pickands III, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), 75-86.
  • 14. V. Piterbarg, Twenty Lectures about Gaussian Processes, Atlantic Financial Press, London, 2015.
  • 15. P. Salminen, On the first hitting time and the last exit time for a Brownian Motion to/from a moving boundary, Adv. Appl. Probab. 20 (1988), 411-426.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c09d9f9f-5a60-4a5e-bba7-5de1ac5afc95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.