Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 9 (44) | 428--445
Tytuł artykułu

A Tri-port DC-DC Converter for Bifacial PV Panels Coupled with Energy Storage

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The power output of photovoltaic (PV) systems, especially bifacial modules, varies due to daily fluctuations in irradiance and temperature. Maximising the efficiency and power extraction are considered crucial. Hybrid DC off-grid topologies are highly promising for rural electrification with solar energy and battery backup. These systems, tailored for household appliance use, feature low semiconductor count, continuous current ports for PV, battery and DC loads, low-voltage levels for PV and battery, voltage regulation for DC loads, maximum power point tracking (MPPT), proper battery charging and discharging, high-voltage boosting without lowfrequency transformers and reduced power converter stages. However, the existing schemes often lack the above-mentioned critical features. Hence, this paper proposes a novel three-switch tri-port converter with integrated energy storage for stand-alone bifacial PV applications, with modelling and experimental validation. The battery serves as an energy storage component, regulating the DC link voltage for consistency. This paper underscores PV system power optimisation and introduces a novel tri-port converter for stand-alone bifacial PV setups, emphasising energy storage’s role in voltage regulation.
Wydawca

Rocznik
Strony
428--445
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Indian Institute of Technology Kharagpur, Kharagpur, India
  • University of Southampton, Southampton, UK
  • Indian Institute of Technology Kharagpur, Kharagpur, India
autor
  • Indian Institute of Technology Kharagpur, Kharagpur, India
Bibliografia
  • Batzelis, E. I. (2017). Simple PV Performance Equations Theoretically Well Founded on the Single-Diode Model. IEEE Journal of Photovoltaics, 7(5), pp. 1400–1409. doi: 10.1109/JPHOTOV.2017.2711431
  • Bhattacharjee, A. K., Kutkut, N. and Batarseh, I. (2018). Review of Multiport Converters for Solar and Energy Storage Integration. IEEE Transactions on Power Electronics, 34(2), pp. 1431–1445. doi: 10.1109/TPEL.2018.2830788
  • Bird, L., Milligan, M. and Lew, D. (2013). Integrating Variable Renewable Energy: Challenges and Solutions (No. NREL/TP-6A20-60451). Golden, CO, US: National Renewable Energy Lab (NREL).
  • de Melo, K. B., da Silva, M. K., de Souza Silva, J. L., Costa, T. S. and Villalva, M. G. (2022). Study of Energy Improvement with the Insertion of Bifacial Modules and Solar Trackers in Photovoltaic Installations in Brazil. Renewable Energy Focus, 41, pp. 179–187. doi: 10.1016/j.ref.2022.02.005
  • IEA, “Renewable Electricity Growth Is Accelerating Faster than Ever Worldwide, Supporting the Emergence of the New Global Energy Economy,” News, pp. p–1, 2021. https://www.iea.org/news/renewable-electricity-growth-is-acceleratingfaster-than-ever-worldwide-supporting-theemergence-of-the-new-global-energy-economy
  • Karpana, S., Batzelis, E., Kampitsis, G., Maiti, S. and Chakraborty, C. (2024). A Soft-Switched Multi-Port Converter for PV/Supercapacitors Hybrid Systems Enabling Frequency Response Services. IEEE Transactions on Industry Applications, PP (99), pp. 1–15. doi: 10.1109/TIA.2024.3351628
  • Li, Q. and Wolfs, P. (2008). A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies with Three Different DC Link Configurations. IEEE Transactions on Power Electronics, 23(3), pp. 1320–1333. doi: 10.1109/TPEL.2008.920883
  • Li, W., Xiao, J., Zhao, Y. and He, X. (2011). PWM Plus Phase Angle Shift (PPAS) Control Scheme for Combined Multiport DC/DC Converters. IEEE Transactions on Power Electronics, 27(3), pp. 1479–1489. doi: 10.1109/TPEL.2011.2163826
  • Manuel, N. L. and İnanç, N. (2022). Sliding Mode ControlBased MPPT and Output Voltage Regulation of a Stand-alone PV System. Power Electronics and Drives, 7(1), pp. 159–173. doi: 10.2478/pead2022-0012
  • Mohammadi, K., Abbasi, V. and Tanha, K. M. (2022). Three-Port DC-DC Converter for Stand-Alone PV/Battery Systems with Four Operation Modes. International Journal of Circuit Theory and Applications, 50(7), pp. 2584–2614. doi: 10.1002/cta.3273
  • Moubayed, N., Kouta, J., El-Ali, A., Dernayka, H. and Outbib, R. (2008, May). Parameter identification of the lead-acid battery model. In: 2008 33rd IEEE Photovoltaic Specialists Conference. San Diego, CA, USA: IEEE, pp. 1–6.
  • N-type PERC Bifacial PV Module. (2022, October). Adani. [Online]. Available: https://5.imimg.com/data5/SM/PR/AA/SELLER-12708464/adani-solarpanel.pdf
  • Perera, H. M. R. and Wen, H. (2019, August). Power generation and performance analysis of Bifacial vs Mono-facial 10KW Photovoltaic power station. In: 2019 18th International Conference on Optical Communications and Networks (ICOCN). Huangshan, China: IEEE, pp. 1–3.
  • Phimu, K., Singh, K. J. and Dhar, R. S. (2021, October). Efficient optimization technique for analysing the performance of bifacial solar cells using fuzzy logic. In: International Conference on Computational Techniques and Applications. Singapore: Springer Nature Singapore, pp. 263–272.
  • Raina, G., Mathur, S. and Sinha, S. (2022). Behavior of Bifacial and Monofacial Photovoltaic Modules Under Partial Shading Scenarios. International Journal of Energy Research, 46(9), pp. 1283712853. doi: 10.1002/er.8057
  • Sahu, P. K., Karpana, S., Chakraborty, C. and Roy, J. N. (2023b, December). A bifacial PV/battery three port hybrid system for stand-alone applications. In: 2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON). SC, USA: IEEE, pp. 1–6.
  • Sahu, P. K., Roy, J. N. and Chakraborty, C. (2023a). Performance Assessment of a Bifacial PV System Using a New Energy Estimation Model. Solar Energy, 262, p. 111818. doi: 10.1016/j.solener.2023.111818
  • Selvaraj, J. and Rahim, N. A. (2008). Multilevel Inverter for Grid-Connected PV System Employing Digital PI Controller. IEEE Transactions on Industrial Electronics, 56(1), pp. 149–158. doi: 10.1109/TIE.2008.928116
  • Siddiqui, N., Verma, A. and Shrivastava, D. (2023, March). Fuzzy logic-based MPPT control for bifacial photovoltaic module. In: 2023 Second International Conference on Electronics and Renewable Systems (ICEARS). Tuticorin, India: IEEE, pp. 1–6.
  • Siddiqui, N., Verma, A. and Srivastava, D. (2022, December). Perturb and observe algorithm for MPPT of bifacial photovoltaic module. In: 2022 IEEE International Power and Renewable Energy Conference (IPRECON). Kollam, India: IEEE, pp. 1–6.
  • Villalva, M. G., De Siqueira, T. G. and Ruppert, E. (2010). Voltage Regulation of Photovoltaic Arrays: Small-Signal Analysis and Control Design. IET Power Electronics, 3(6), pp. 869–880. doi: 10.1049/iet-pel.2008.0344
  • Vračar, D. and Pejović, P. (2022). Active-Clamped Flyback DC-DC Converter in an 800V Application: Design Notes and Control Aspects. Journal of Electrical Engineering, 73(4), pp. 237–247. doi: 10.2478/jee-2022-0032
  • Wang, Z. and Li, H. (2012). An Integrated Three-Port Bidirectional DC–DC Converter for PV Application on a DC Distribution System. IEEE Transactions on Power Electronics, 28(10), pp. 4612–4624. doi: 10.1109/TPEL.2012.2236580
  • Zhen, Y., Zuyu, W., Ninghui, Z., Ligen, Y. and Jing Yu, C. (2021). MATLAB Modelling of Double Sided Photovoltaic Cell Module. Power Electronics and Drives, 6(1), pp. 12–25. doi: 10.2478/pead-20210002
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c0839f42-18b6-44fc-9b80-eb373b47cdf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.