Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 40, No. 3 | 112--124
Tytuł artykułu

Fabrication, microstructure, and machinability of aluminum metal-matrix composites

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, researchers across the world focus on sustainable products, and, accordingly, it is now imperative to develop sustainable MMCs. In line with this, ongoing experimental work aims to fabricate aluminum 6061 MMC with ground granulated blast furnace slag (GGBS) and study the micro-structural and machinability characteristics. A liquid state stir casting setup is used to melt aluminum 6061 alloy and reinforced with 2.5 wt.%, 5.0 wt.%, and 7.5 wt.% of GGBS. X-ray diffraction (XRD) studies were used to identify the chemical elements that were present in the fabricated samples. In order to observe the formation of any secondary elements, energy-dispersive X-ray spectroscopy and scanning electron microscopy (SEM) were utilized on the cast composites. Through the milling process, the influence of the GGBS reinforcement composition on the surface roughness (SR) and material removal rate (MRR) of aluminum 6061 MMC was examined, considering the parameters of spindle speed, feed rate, depth of cut, and reinforcement composition percentage. The L9 orthogonal array (OA) was used to investigate the results of the experiments, and the Taguchi technique was used to optimize the process. The best MRR value was produced by the feed rate (B3) of 260 mm3/min and the depth of cut (C3) of 0.75 mm. The study ascertained that the lower SR value is attained corresponding to a spindle speed of 1,250 rpm, a feed rate of 220 mm3/min, a depth of cut of 0.25 mm, and a reinforcement composition percentage of Al 6061 with 5% GGBS.
Wydawca

Rocznik
Strony
112--124
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Alpha College of Engineering, Chennai-600124, India
  • Department of Mechanical Engineering, AKT Memorial College of Engineering and Technology, Kallakurichi-606213, India, tvelan10@gmail.com
autor
  • Department of Mechanical Engineering, Muthayammal Engineering College (Autonomous), Rasipuram-637408, India
Bibliografia
  • [1] Miracle DB. Metal matrix composites – From science to technological significance. Compos Sci Technol. 2005; 65:2526.
  • [2] Singh H, Bahri H, Singh KK. Experimental analysis of wear and mechanical characteristics of aluminium matrix composite fabricated through powder metallurgy. In: Computational and experimental methods in mechanical engineering. Singapore: Springer; 2022. pp. 115–29.
  • [3] Gnanavelbabu A, Surendran KT, Kumar S. Process optimization and studies on mechanical characteristics of AA2014/Al2O3 nanocomposites fabricated through ultrasonication assisted stir–squeeze casting. Int J Met. 2022;16(2):759–82.
  • [4] Rajan N, Thanigaivelan R, Muthurajan KG. Machinability studies on an A17075 composite with varying amounts of B4C using an induction-heated electrolyte in electrochemical machining. Mater Tehnol. 2019;53(6):873–80.
  • [5] Dinaharana I, Murugan N, Parameswaran S. Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites. Mater Sci Eng A. 2011;528:5733–40.
  • [6] Naveen Kumar G, Narayanasamy R, Natarajan S, Kumaresh Babu SP, Sivaprasad K, Sivasankaran S. Dry sliding wear behaviour of AA 6351-ZrB2 in situ composite at room temperature. Mater Des. 2010;31:1526–32.
  • [7] Michael Rajan HB, Ramabalan S, Dinaharan I, Vijay SJ. Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des. 2013;44:438–45.
  • [8] Zhong L, Zhao Y, Zhang S, Chen G, Chen S, Liu Y. Microstructure and mechanical properties of in situ TiB2/7055 composites synthesized by direct magnetochemistry melt reaction. Trans Nonferrous Metals Soc China. 2013;23:2502–8.
  • [9] Zhang S, Zhao Y, Chen G, Cheng X. Microstructures and dry sliding wear properties of in situ (Al3Zr +ZrB2)/Al composites. J Mater Process Technol. 2007;184:201–8.
  • [10] Zhao Y, Zhang S, Chen G, Cheng X, Dai Q. (ZrB2+Al2O3+Al3Zr)p/Al–4Cu composite synthesized by magnetochemical melt reaction. Mater Sci Eng A. 2008;487:1–6.
  • [11] Kumar N, Gautam RK, Mohan S. In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites. Mater Des. 2015;80:129–36.
  • [12] Seeman M, Ganesan G, Karthikeyan R, Velayudham A. Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol. 2010;48(5–8):613–24.
  • [13] Reddy NSK, Kwang-Sup S, Yang M. Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites. J Mater Process Technol. 2008;201(1–3):574–9.
  • [14] Kuram E, Ozcelik B. Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al7075 material with ball nose end mill. Measurement. 2013;46(6):1849–64.
  • [15] Thiraviam R, Ravisankar V, Kumar P, Thanigaivelan R, Arunachalam R. A novel approach for the production and characterisation of aluminium–alumina hybrid metal matrix composites. Mater Res Express. 2020;7(4):046512.
  • [16] Karabulut S, Gökmen U, Çinici H. Optimization of machining conditions for surface quality in milling AA7039-based metal matrix composites. Arab J Sci Eng. 2018;43(3):1071–82.
  • [17] Manohar G, Maity SR, Pandey KM. Microstructural and mechanical properties of microwave sintered AA7075/Graphite/SiC hybrid composite fabricated by powder metallurgy techniques. Silicon. 2021; 14:5179–89.
  • [18] Maniraj S, Thanigaivelan R. Optimization of electrochemical micromachining process parameters for machining of AMCs with different % compositions of GGBS using Taguchi and TOPSIS methods. Trans Indian Inst Met. 2019;72(12):3057–66.
  • [19] Ramesh S, Viswanathan R, Ambika S. Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement. 2016; 78:63.
  • [20] Saravanan KG, Sivapragasam A, Prabu R, Maniraj S. Parametric optimization of chrome composite through ultrasonic machining using Taguchi approach. Mate Today Proc. 2021; 45:1975–8.
  • [21] Zhang GF, Tan YQ, Zhang B. Effect of SiC particles on the machining of aluminum/SiC composite. Mater Sci Forum. 2009; 626:219–24.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c06d824a-9c7e-487a-9764-04174cfdca7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.