Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 2 | 492--508
Tytuł artykułu

Control of a two-degree-of-freedom system with combined excitations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the chaotic dynamics of parametrically, externally and tuned excited suspended cable is studied with negative cubic velocity feedback. The equations of motion of this system are exhibited by two-degree-of-freedom system including quadratic and cubic nonlinearities. Using the multiple scale perturbation technique, the response of the nonlinear system near the simultaneous primary, sub-harmonic, combined and internal resonance case of this system is extracted up to the second order approximation. The stability of the obtained numerical solution is investigated using frequency response equations. The effect of different parameters on the vibrating system behavior are investigated and reported. The simulation results are achieved using MATLAB (R2012a) programs.
Wydawca

Rocznik
Strony
492--508
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt, hany_samih@yahoo.com
  • Department of Basic Sciences, Modern Academy for Engineering and Technology, Egypt
Bibliografia
  • [1] N.C. Perkins, Modal interactions in the non-linear response of elastic cables under parametric/external excitation, International Journal of Non-Linear Mechanics 27 (2) (1992) 233–250.
  • [2] C.L. Lee, N.C. Perkins, Three-dimensional oscillations of suspended cables involving simultaneous internal resonances, Nonlinear Dynamics 8 (1) (1995) 45–63.
  • [3] F. Benedettini, G. Rega, R. Alaggio, Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions, Journal of Sound and Vibration 182 (5) (1995) 775–798.
  • [4] A. Luongo, G. Piccardo, Non-linear galloping of sagged cables in 1:2 internal resonance, Journal of Sound and Vibration 214 (5) (1998) 915–940.
  • [5] G.V. Rao, R.N. Iyengar, Internal resonance and non-linear response of a cable under periodic excitation, Journal of Sound and Vibration 149 (1991) 25–41.
  • [6] Y.Y. Zhao, L.H. Wang, D.L. Chen, L.Z. Jiang, Nonlinear dynamic analysis of the two-dimensional simplified model of an elastic cable, Journal of Sound and Vibration 255 (2002) 43–59.
  • [7] N. Srinil, G. Rega, S. Chucheepsakul, Large amplitude three-dimensional free vibration of inclined sagged elastic cable, Nonlinear Dynamics 33 (2003) 129–154.
  • [8] H.N. Arafat, A.H. Nayfeh, Non-linear responses of suspended cables to primary resonance excitations, Journal of Sound and Vibration 266 (2) (2003) 325–354.
  • [9] G. Rega, Non-linear vibrations of suspended cables. Part I: modeling and analysis, Journal of Applied Mechanics Review 57 (6) (2004) 443–478.
  • [10] G. Rega, Non-linear vibrations of suspended cables. Part II: deterministic phenomena, Journal of Applied Mechanics Review 57 (6) (2004) 479–514.
  • [11] S.R. Nielsen, P.H. Kirkegaard, Super and combinatorial harmonic response of flexible inclined cables with small sag, Journal of Sound and Vibration 251 (1) (2002) 79–102.
  • [12] G. Zheng, J.M. Ko, Y.O. Ni, Super-harmonic and internal resonances of a suspended cable with nearly commensurable natural frequencies, Nonlinear Dynamics 30 (1) (2002) 55–70.
  • [13] W. Zhang, Y. Tang, Global dynamics of the cable under combined parametrical and external excitations, International Journal of Non-Linear Mechanics 37 (3) (2002) 505–526.
  • [14] H. Chen, Q. Xu, Bifurcation and chaos of an inclined cable, Nonlinear Dynamics 57 (2009) 37–55.
  • [15] A.F. EL-Bassiouny, Vibration and chaos control of nonlinear torsional vibrating systems, Physica A 366 (2006) 167–186.
  • [16] Y. Lei, W. Xu, J. shen, T. Fang, Global synchronization of two parametrically excited systems using active control, Chaos, Solitions and Fractals 28 (2006) 428–436.
  • [17] M.M. Kamel, Y.S. Hamed, Non-linear analysis of an inclined cable under harmonic excitation, Acta Mechanica 214 (2010) 315–325.
  • [18] A. Abe, Validity and accuracy of solutions for nonlinear vibration analyses of suspended cables with one-to-one internal resonance, Nonlinear Analysis: Real World Applications 11 (4) (2010) 2594–2602.
  • [19] N. Srinil, G. Rega, S. Chucheepsakul, Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: theoretical formulation and model validation, Nonlinear Dynamics 48 (3) (2007) 231–252.
  • [20] N. Srinil, G. Rega, Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: internal resonance activation reduced-order models and nonlinear normal modes, Nonlinear Dynamics 48 (3) (2007) 253–274.
  • [21] A. Gonzalez-Buelga, S.A. Neild, D.J. Wagg, J.H.G. Macdonald, Modal stability of inclined cables subjected to vertical support excitation, Journal of Sound and Vibration 318 (3) (2008) 565–579.
  • [22] H. Chen, D. Zuo, Z. Zhang, Q. Xu, Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations, Nonlinear Dynamics 62 (2010) 623–646.
  • [23] M. Belhaq, M. Houssni, Suppression of chaos in averaged oscillator driven by external and parametric excitations, Chaos, Solitions and Fractals 11 (2000) 1237–1246.
  • [24] P.F. Pai, B. Rommel, M.J. Schulz, Non-linear vibration absorbers using higher order internal resonances, Journal of Sound and vibration 234 (5) (2000) 799–817.
  • [25] A. Berlioz, C.H. Lamarque, An on-linear for the dynamics of an inclined cable, Journal of Sound and vibration 279 (2005) 619–639.
  • [26] L. Faravelli, F. Ubertin, Nonlinear state observation for cable dynamics, Journal of vibration and Control 15 (2009) 1049–1077.
  • [27] F. Ubertini, Active feedback control for cable vibrations, International Journal of Smart Structure System 4 (2008) 407–428.
  • [28] Y. Zhao, L. Wang, On the symmetric modal interaction of the suspended cable: three-to-one internal resonance, Journal of Sound and vibration 294 (2006) 1073–1093.
  • [29] Y. Zhao, L. Wang, Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances, International Journal of Solids Structure 43 (2006) 7800–7819.
  • [30] Y. Zhao, L. Wang, Non-linear planar dynamics of suspended cables investigated by the continuation technique, Journal of Engineering Structure 29 (2007) 1135–1144.
  • [31] Y. Zhao, L. Wang, Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations, Journal of Sound and vibration 319 (2009) 1–14.
  • [32] C.C. Wang, H.T. Yau, Analysis of nonlinear dynamic behavior of atomic force microscope using differential transformation method, Acta Mechanica 198 (2008) 87–98.
  • [33] C.C. Wang, H.T. Yau, Application of the differential transformation method to bifurcation and chaotic analysis of an AFM probe tip, Computers & Mathematics with Applications 61 (8) (2011) 1957–1962.
  • [34] J. Awrejcewiz, V.A. Krysko, I.V. Papkova, A.V. Krysko, Routes to chaos in continuous mechanical systems. Part 1: mathematical models and solution methods, Chaos, Solitons & Fractals 45 (2012) […] archives of civil and mechanical enginering 15 (2015) 492–508.
  • [35] V.A. Krysko, J. Awrejcewicz, I.V. Papkova, A.V. Krysko, Routes to chaos in continuous mechanical systems. Part 2: modelling transitions from regular to chaotic dynamics, Chaos, Solitons & Fractals 45 (2012) 709–720.
  • [36] J. Awrejcewicz, V.A. Krysko, I.V. Papkova, A.V. Krysko, Routes to chaos in continuous mechanical systems. Part 3: the Lyapunov exponents, hyper, hyper-hyper and spatial-temporal chaos, Chaos, Solitons & Fractals 45 (2012) 721–736.
  • [37] C.S. Hsu, W.H. Cheng, Steady-state response of a dynamical system under combined parametric and forcing excitation, Journal of Applied Mechanics, Transaction of American Society of Mechanical Engineering 41 (1974) 371–378.
  • [38] N. Haquang, D.T. Mook, Nonlinear structural vibrations under combined parametric and external excitations, Journal of Sound and Vibration 118 (1987) 179–181.
  • [39] S.K. Thampi, J.M. Niedzwecki, Parametric and external excitation of marine risers, Journal of Engineering Mechanics 118 (5) (1992) 943–960.
  • [40] M.H. Patel, H.I. Park, Combined axial and lateral responses of tensioned buoyant platform tethers, Engineering Structures 17 (1995) 687–695.
  • [41] C.S. Ryu, M. Isaacson, Dynamic response analysis of slender maritime structure under vessel motion and regular waves, Journal of Korean Society of Coastal and Ocean Engineering 10 (2) (1998) 64–72.
  • [42] A. Kahraman, G.W. Blankenship, Interactions between commensurate parametric and forcing excitations in a system with clearance, Journal of Sound and Vibration 194 (3) (1996) 317–336.
  • [43] H.Il. Park, D.-H. Jung, A finite element method for dynamic analysis of long slender marine structures under combined parametric and forcing excitations, Ocean Engineering 29 (2002) 1313–1325.
  • [44] Z. Wójcicki, Sensitivity analysis as a method of absorber tuning for reduction of steady state response of linear parametric systems, Journal of Sound and Vibration 253 (4) (2002) 755–772.
  • [45] W. Zhang, G. Meng, Nonlinear dynamical system of micro- cantilever under combined parametric and forcing excitations in MEMS, Sensors and Actuators A 119 (2005) 291–299.
  • [46] A.H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.
  • [47] J. Awrejcewicz, V.A. Krysko, Introduction to Asymptotic Methods, Chapmand and Hall, CRC Press, Boca Raton, 2006.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c0641ba4-24df-4571-9935-1783bc9da751
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.