Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 45, No. 4 | 466--484
Tytuł artykułu

Occurrence of microcystins and anatoxin-a in eutrophic lakes of Saint Petersburg, Northwestern Russia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyanobacteria are natural components of many freshwater bodies worldwide. In Russian lakes, the presence of potentially toxic cyanobacteria was also frequently observed. Our study was conducted in Sestroretskij Razliv Lake (Razliv) and Lower Suzdal Lake (Suzdal) in Saint Petersburg region, Northwestern Russia, which differ from one another in eutrophic status and composition of the phytoplankton community. In large, shallow, artificial and hypertrophic Razliv, Aphanizomenon flos-aquae and Microcystis spp. dominated. Fourteen microcystin variants were identified in this lake. The maximum concentration of extracellular microcystins was 41.37 μg l−1. In eutrophic and shallow Suzdal, dominated by Planktothrix agardhii, nine microcystin variants and anatoxin-a (<0.54 μg l−1) were found. The maximum total concentration of extracellular MCs in this lake was 2.89 μg l−1. Regular studies into the production of cyanotoxins in these water bodies were carried out for the first time. The analyses performed with the application of high-resolution tandem mass spectrometry revealed the presence of microcystins in 59% of the samples collected during a 3-year study. Since both lakes are used for recreational purposes, the regular monitoring program should be implemented to protect water users from a potential risk that was identified in our study.
Wydawca

Rocznik
Strony
466--484
Opis fizyczny
Bibliogr. 47 poz., tab., wykr.
Twórcy
autor
  • Department of Eco-chemical Studies, Saint-Petersburg Scientific-Research Centre for Ecological Safety, Russian Academy of Sciences, Korpusnya 18, 197110 Saint Petersburg, Russian Federation, s3561389@ya.ru
autor
  • Department of Eco-chemical Studies, Saint-Petersburg Scientific-Research Centre for Ecological Safety, Russian Academy of Sciences, Korpusnya 18, 197110 Saint Petersburg, Russian Federation
autor
  • Department of Eco-chemical Studies, Saint-Petersburg Scientific-Research Centre for Ecological Safety, Russian Academy of Sciences, Korpusnya 18, 197110 Saint Petersburg, Russian Federation
  • Department of Eco-chemical Studies, Saint-Petersburg Scientific-Research Centre for Ecological Safety, Russian Academy of Sciences, Korpusnya 18, 197110 Saint Petersburg, Russian Federation
Bibliografia
  • [1]. Apeldoorn, M.E.v., Egmond, H.P.v., Speijers, G.J.A. & Bakker G.J.I. (2007). Toxins of cyanobacteria. Mol. Nutr. Food Res. 51: 7-60.
  • [2]. Babanazarova, O.V., Sidelev, S.I., Aleksandrina, E.M., Sakharova, E.G. & Kurmayer, R. (2011). Phytoplankton structure and microcystine concentration in the highly eutrophic Nero Lake. Water Resources 38(2): 229-236. DOI: 10.1134/ S0097807811020023.
  • [3]. Belykh, O.I., Gladkikh, A.S., Sorokovikova, E.G., Tikhonova, I.V.& Butina, T.V. (2015). Identification of toxic Cyanobacteria in Lake Baikal. Dokl. Biochem. Biophys. 463(1): 220-224. DOI: 10.1134/S1607672915040067.
  • [4]. Bittencourt-Oliveira, M.C., Santos, D.M.S. & Moura, N.A. (2010). Toxic cyanobacteria in reservoirs in northeastern Brazil: detection using a molecular method. Braz. J. Biol. 70(4): 1005-1010. DOI:10.1590/S1519-69842010000500012.
  • [5]. Briand, E., Gugger, M., Francois, J.-Ch., Bernard, C., Humbert, J.-F. et al. (2008). Temporal Variations in the Dynamics of Potentially Microcystin-Producing Strains in a Bloom- Forming Planktothrix agardhii (Cyanobacterium) Population. Applied and environmental microbiology 74(12): 3839-3848. DOI: 10.1128/AEM.02343-07.
  • [6]. Chen, J., Xie, P., Li, L. & Xu, J. (2009). First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol. Sci. 108(1): 81-89. DOI: 10.1093/toxsci/kfp009.
  • [7]. Chorus, I. (2012). Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. Dessau-Rosslau, Germany: Federal Environment Agency (Umweltbundesamt). Retrieved February 15, 2016, from http:// www.umweltdaten.de/publikationen/ fpdf-l/4390.pdf
  • [8]. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Official Journal of the European Union, 2006, L64:37-51. Retrieved February 15, 2016, from http://eur-lex.europa.eu/LexUriServ/LexUriServ. do?uri=OJ:L:2006:064:0037:0051:EN:PDF
  • [9]. Dimitrakopoulos, I.K., Kaloudis, T.S., Hiskia, A.E., Thomaidis, N.S & Koupparis, M.A. (2010). Development of a fast and selective method for the sensitive determination of anatoxin-a in lake waters using liquid chromatography- tandem mass spectrometry and phenylalanine-d5 as internal standard. Anal. Bioanal. Chem. 397: 2245-2252. DOI: 10.1007/s00216-010-3727-3.
  • [10]. Dittmann, E. & Wiegand, C. (2006). Cyanobacterial toxins- occurrence, biosynthesis and impact on human affairs. Mol. Nutr. Food Res. 50: 7-17. DOI: 10.1002/mnfr.200500162.
  • [11]. Fastner, J., Neumann, U., Wirsing, B., Weckesser, J., Wiedner, C. et al. (1999). Microcystins (hepatotoxic heptapeptides) in German fresh water bodies. Environ. Toxicol. 14: 13-22. DOI: 10.1002/(SICI)1522-7278(199905)14:2<291 ::AID-TOX 11>3.0.CO;2-E.
  • [12]. Furey, A., Allis, O., Ortea, P.M., Lehane, M. & James, K. J. (2008). Hepatotoxins: Context and Chemical Determination. In L.M. Botana (Ed.), Seafood and Freshwater Toxins. Pharmacology, Physiology and Detection (pp. 844-886). Second Edition. Boca Raton: CRC Press Taylor & Francis Group.
  • [13]. Grabowska, M. & Mazur-Marzec, H. (2011). The effect of cyanobacterial blooms in the Siemianowska Dam Reservoir on the phytoplankton structure in the Narew River. Ocean. Hydrobiol. Stud. 40(1): 19-26. DOI: 10.2478/ s13545-011-0003-x.
  • [14]. Gromov, B.V., Vepritsky, A.A., Mamkaeva, K.A. & Voloshko, L.N. (1996). A survey of toxicity of cyanobacterial blooms in Lake Ladoga and adjacent water bodies. Hydrobiologia 322: 129-136.
  • [15]. James, K.J., Dauphard, J., Crowley, J. & Furey, A. (2008). Cyanobacterial Neurotoxins, Anatoxin-A and Analogues: Detection and Analysis. In L. M. Botana (Ed.), Seafood and Freshwater Toxins. Pharmacology, Physiology and Detection (pp. 809-822). Second Edition. Boca Raton: CRC Press Taylor & Francis Group.
  • [16]. Kokocinski, M., Stefaniak, K., Izydorczyk, K., Jurczak, T., Mankiewicz-Boczek, J. et al. (2011). Temporal variation in microcystin production by Planktothrix agardhii (Gomont) Anagnostidis and Komórek (Cyanobacteria, Oscillatoriales) in a temperate lake. Ann. Limnol. - Int. J. Lim. 47: 363-371. DOI:10.1051/limn/2011046.
  • [17]. Korneva, L.V., Solovieva, V.V., Zhakovskaya, Z.A., Russkikh, Ia.V. & Chernova E.N. (2014). Phytoplankton and content of cyanotoxins in Rrybinsk, Gorky and Cheboksary Reservoirs during the anomalously hot summer of 2010. Water: Chemistry and Ecology 8: 24-29. (In Russian with English abstract).
  • [18]. Kurmayer, R. & Christiansen G. (2009). The genetic basis of toxin production in Cyanobacteria. Freshwater Reviews 2:31-50. DOI: 10.1608/FRJ-2.1.2.
  • [19]. Lyra, C., Suomalainen, S., Gugger, M., Vezie, Ch., Sundman, P. et al. (2001). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology 51: 513-526.
  • [20]. Mayumi, T., Kato, H., Imanishi, S., Kawasaki, Y., Hasegawa, M. et al. (2006). Structural Characterization of Microcystins by LC/MS/MS under Ion Trap Conditions. J. Antibiot. 59(11): 710-719. DOI: 10.1038/ja.2006.95.
  • [21]. Neilan, B.A., Pearson, L.A., Muenchhoff, J., Moffitt, M.C. & Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15(5): 1239-1253. DOI: 10.1111/j.1462- 2920.2012.02729.x.
  • [22]. Nixdorf, B., Mischke, U. & Rucker, J. (2003). Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes - an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiol. 502:111-121. DOI: 10.1023/B:HYDR.0000004274.65831.e5.
  • [23]. Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N. et al. (2006). Biovolumes and size-classes of phytoplankton in the Baltic Sea. Helsinki: HELCOM Balt.Sea Environ. (Proc. No. 106). http://www.helcom.fi/Lists/Publications/BSEP106. pdf
  • [24]. Osswald, J., Rellan, S., Gago, A. & Vasconcelos, V. (2007). Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Review. Environ. Int. 33: 1070-1089.
  • [25]. Ostermaier, V., Schanz, F., Köster, O. & Kurmayer, R. (2012). Stability of toxin gene proportion in red-pigmented populations of the cyanobacterium Planktothrix during 29 years of re-oligotrophication of Lake Zürich. BMC Biology 10: 100-116. DOI: 10.1186/1741-7007-10-100.
  • [26]. Pawlik-Skowrońska, B., Skowroński, T., Pirszel, J. & Adamczyk, A. (2004). Relationship between cyanobacterial bloom composition and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (SE Poland). Pol. J. Ecol. 52: 479-490.
  • [27]. Pawlik-Skowrońska, B., Pirszel, J. & Kornijów, R. (2008). Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann. Limnol. Int. J. lim. 44(2): 63-68. DOI: 10.1051/limn:2008015.
  • [28]. Rantala, A., Rajaniemi-Wacklin, P., Lyra, C., Lepisto, L., Rintala, J. et al. (2006). Detection of microcystins- producing cyanobacteria in Finnish lakes with genus- specific microcystins synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microbiol. 72(9): 6101-6110. DOI: 10.1128/AEM.01058-06.
  • [29]. Rantala-Ylinen, A., Kana, S., Wang, H., Rouhiainen, L., Wahlsten, M. et al. (2011). Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 77: 7271-7278. DOI: 10.1128/AEM.06022-11.
  • [30]. Rohrlack, T., Skulberg, R., Skulberg, O.M. (2009). Distribution of oligopeptides of the cyanobacterium Planktothrix and their persistence in selected lakes in Fennoscandia. J. Phycol. 45:1259-1265. DOI: 10.1111/j.1529-8817.2009.00757.x.
  • [31]. Russkikh, Y.V., Chernova, E.N., Voyakina, E. Ju., Nikiforov, V. A. & Zhakovskaya, Z.A. (2012). Cyanotoxin determination in natural water matrix by the method of high performance liquid chromatography- mass-spectrometry of high resolution. Izvestiya St. Peterburgskogo gosudarstvennogo technologicheskogo instituta (tekhnicheskogo universiteta) 17(43): 61-66. (In Russian).
  • [32]. Sidelev, S.I., Golokolenova, T.B., Chernova, E.N., Russkikh, I.V. (2015). Analysis of Phytoplankton in Tsimlyansk Reservoir (RUSSIA) for the Presence of Cyanobacterial Hepato and Neurotoxins. Microbiology 84(6): 828-837. DOI: 10.1134/S0026261715060120.
  • [33]. Sivonen, K., Namikoshi, M., Luukkainen, R., Fardig, M., Rouhiainen, L. et al. (1995). Variation of cyanobacterial hepatotoxins in Finland. In M. Munawar & M. Luotola (Eds.), The Contaminats in the Nordic Ecosystem: Dynamics, Processes & Fate. Ecovision World Monograph Series (pp. 163-169). SPB Academic Publishing, Amsterdam, The Netherlands.
  • [34]. Sivonen, K. & Jones, G. (1999). Cyanobacterial toxins. In I. Chorus, J. Bartram (Eds.), Toxic cyanobacteria in water: A guide to the Public Health Consequences, Monitoring and Management (pp. 41-111). London: E & FN Spoon.
  • [35]. Spoof, L., Vesterkvist, P., Lindholm, T. & Meriluoto, J. (2003). Screening for hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography- electrospray ionization mass spectrometry. J. Chromatogr. A 1020: 105-119. DOI: 10.1016/S0021-9673(03)00428-X.
  • [36]. Stefaniak, K., Kokocinski, M. & Messyasz, B. (2005). Dynamics of Planktothrix agardhii (Gom.) Anagn. et Kom. blooms inpolimictic Lake Laskownickie and Grylewskie (Wielkopolska region) Poland. Ocean. Hydrobiol. Stud. 34 (Supl. 3): 125-136.
  • [37]. Teubner, K., Feyerabend, R., Henning, M., Nicklisch, A., Woitke, P. et al. (1999). Alternative blooming of Aphanizomenon fios-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen: phosphorus ratio in hypertrophic riverine lakes. Arch. Hydrobiol., Spec. Issues Advanc. Limnol. 54: 325-344.
  • [38]. Tonk, L., Visser, P.M., Christiansen, G., Dittmann, E., Snelder, E.O.F.M. et al. (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes towards a more toxic variant with increasing light intensity. Applied and Environmental Microbiology 71: 5177-5181. DOI:10.1128/AEM.71.9.5177-5181.2005.
  • [39]. Trifonova, I.S. & Pavlova, O.A. (2008). Phytoplankton succession in urban water-bodies of St. Petersburg as an indicator of their ecological conditions. Limnol. Rev. 8(3): 137-141.
  • [40]. Ueno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Watanabe, M.F. et al. (1996). Detection of microcystin, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17(6): 1317-1321.
  • [41]. van der Merwe, D., Sebbag, L., Nietfeld, J.C., Aubel, M.T., Foss, A. et al. (2012). Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. J. Vet. Diagn. Invest. 24 (4): 679-687. DOI: 10.1177/1040638712445768.
  • [42]. Voloshko, L., Kopecky, J., Safronova, T., Pljusch, A., Titova, N. et al. (2008). Toxins and other bioactive compounds produced by cyanobacteria in Lake Ladoga. Estonian J. of Ecology 57(2): 100-110. DOI: 10.3176/eco.2008.2.02.
  • [43]. Welker, M. (2008). Cyanobacterial Hepatotoxins: Chemistry, Biosynthesis, and Occurrence. In L.M. Botana (Ed.), Seafood and Freshwater Toxins. Pharmacology, Physiology and Detection (pp. 825-844). Second Edition. Boca Raton: CRC Press Taylor & Francis Group.
  • [44]. Wiedner, C., Visser, P.M., Fastner, J., Metcalf, J.S., Codd, G.A. et al. (2003). Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl. Environ. Microbiol. 69 (3): 1475-1481.
  • [45]. WHO. (2003). Guidelines for safe recreational water environments. Vol. 1. Coastal and fresh waters. Geneva: World Health Organization. Retrieved December 30, 2015, from http://www.who.int/water_sanitation_health/ bathing/srwel/en
  • [46]. WHO. (2011). Guidelines for Drinking Water Quality. Geneva: World Health Organization. Retrieved December 30, 2015, from http://www.who.int/water_sanitation_health/ publications/2011/dwq_guidelines/en
  • [47]. Xing, W., Huang, W.M., Liu, Y.D., Li, D.H., Shen, Y.W. et al. (2007). Environmental mechanism of change in cyanobacterial species composition in the Northeastern part of Lake Dianchi (China). FreseniusEnvironmental Bulletin 16(1): 82-90.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c056739d-ba1c-419c-9ebc-0985d28f5379
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.