Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 21, no. 3 | 338--355
Tytuł artykułu

Stabilized Superthermite Gelled Kerosene : towards Advanced Green Propellant Systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although hydrazine is the most common liquid propellant fuel, it is highly toxic and cancerogenic. Gelled hydrocarbons could be the greener substitute. Kerosene was gelled using fumed silica nanoparticles (NPs). Reactive metal particles can act as a high energy dense material (HEDM). With this aim, gelled kerosene was loaded with aluminum (Al) NPs. In combustion, SiO2/Al can induce vigorous exothermic superthermite reaction. Gelled kerosene demonstrated shear thinning behaviour, with high gel stability at 90 g centrifugal acceleration. The silica NPs could form a network via hydrogen bonding of Si‒OH groups; this network could be broken down under a high shear rate. Aluminized gelled kerosene formulation (8 wt.% SiO2 + 8 wt.% Al) preserves the shear thinning behaviour, i.e. it reached the viscosity of liquid kerosene at a shear rate below 25000 S -1. This value lies within the range of pumping systems in rocket engines. Metallized gelled formulations demonstrated yield stress that is required to avoid phase separation and sedimentation during storage. Stabilised superthermite NPs not only offered enhanced characteristic exhaust velocity by 6% using the ICT thermodynamic code. Furthermore, they could induce vigorous exothermic superthermite reactions.
Słowa kluczowe
Wydawca

Rocznik
Strony
338--355
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • School of Chemical Engineering, Military Technical College, Cairo, Egypt, s.elbasuney@mtc.edu.eg
  • Nanotechnology Research Center, Military Technical College, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Cairo, Egypt
Bibliografia
  • [1] Edwards, T. Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003. J. Propul. Power 2003, 19(6): 1089-1107.
  • [2] Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements. John Wiley and Sons, 2016.
  • [3] Ciezki, H.; Zhukov, V.; Werling, L.; Kirchberger, C.; Naumann, C.; Friess, M.; Riedel, U. Advanced Propellants for Space Propulsion ‒ A Task within the DLR Interdisciplinary Project” Future Fuels. Proc.8th European Conference for Aeronautics and Space Sciences, 2019.
  • [4] Gohardani, A.S.; Stanojev, J.; Demaire, A.; Anflo, K.; Persson, M.; Wingborg, N.; Nilsson, C. Green Space Propulsion: Opportunities and Prospects. Prog. Aerospace Sci. 2014. 71: 128-149; https://doi.org/10.1016/j.paerosci.2014.08.001.
  • [5] Scharlemann, C. Green Propellants: Global Assessment of Suitability and Applicability. Proc. 3rd European Conf. Aero-Space Sciences (EUCASS’09), 2009.
  • [6] Scharlemann, C. GRASP-Analysis of Green Propellant Candidates. Proc. 62nd Int. Astronautical Congress, Cape Town, South Africa, 2011.
  • [7] Marshall, W.M.; Deans, M.C. Recommended Figures of Merit for Green Monopropellants. Proc. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2013, p. 3722.
  • [8] Hasan, D.; Grinstein, D.; Kuznetsov, A.; Natan, B.; Schlagman, Z.; Habibi, A.; Elyashiv, M. Green Comparable Alternatives of Hydrazines-based Monopropellant and Bipropellant Rocket Systems. In: Aerosp. Eng. (Dekoulis, G. Ed.) 2019; ISBN 978-1-83962-787-3.
  • [9] Mathur, A. Rocket Plume Attenuation Model. Proc. 24th AIAA Int. Communications Satellite Systems Conf., 2006.
  • [10] Batonneau, Y.; Brahmi, R.; Cartoixa, B.; Farhat, K.; Kappenstein, C.; Keav, S.; Kharchafi-Farhat, G.; Pirault-Roy, L.; Saouabe M.; Scharlemann, C. Green Propulsion: Catalysts for the European FP7 Project GRASP. Top. Catal. 2014, 57(6): 656-667; https://doi.org/10.1007/s11244-013-0223-y.
  • [11] Jyoti, B.V.; Baek, S.W. Formulation and Comparative Study of Rheological Properties of Loaded and Unloaded Ethanol-based Gel Propellants. J. Energ. Mater. 2015, 33(2): 125-139; https://doi.org/10.1080/07370652.2014.939311.
  • [12] Rapp, D.; Zurawski, R. Characterization of Aluminum/RP-1 Gel Propellant Properties. Proc. 24th Joint Propulsion Conf., 1988.
  • [13] Pinto, P.C.; Hopfe, N.; Ramsel, J.; Naumann, W.; Thumann, A.; Kurth, G. Scalability of Gelled Propellant Rocket Motors. Proc. 7th European Conf. Aeronautics and Space Sciences (EUCASS), Milan, Italy, 2017; https://doi.org/10.13009/EUCASS2017-158.
  • [14] Globus, R. System Analysis of Gelled Space‐Storable Propellant. Fourth Quart. Prog. Rep. to Office of Adv. Res. and Tech., NASA, Contract No. NAS7-473, 1970,7-473.
  • [15] Hodge, K.; Crofoot, T.; Nelson, S. Gelled Propellants for Tactical Missile Applications. Proc. 35th Joint Propulsion Conf. and Exhibit, 1999.
  • [16] Coguill, S.L. Synthesis of Highly Loaded Gelled Propellants. Resodyn Corp., Butte, MT, 2009, pp. 1-11.
  • [17] Dennis, J.; Pourpoint, T.; Son, S. Ignition of Gelled Monomethylhydrazine and Red Fuming Nitric Acid in An Impinging Jet Apparatus. Proc. 47th AIAA/ASME/ SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011.
  • [18] Rahimi, S.; Natan, B. Numerical Solution of the Flow of Power‐Law Gel Propellants in Converging Injectors. Propellants Explos., Pyrotech. 2000, 25(4): 203-212; https://doi.org/10.1002/1521-4087(200009)25:4<203::AID-PREP203>3.0.CO;2-E.
  • [19] Varghese, T.; Gaindhar, S.C.; David, J.; Jose, J.; Muthiah, R.; Rao, S.S.; Ninan K.N.; Kirshnamurthy, V.N. Developmental Studies on Metallised UDMH and Kerosene Gels. Def. Sci. J. 1995, 45(1): 25-30; https://doi.org/10.14429/dsj.45.4098.
  • [20] Padwal, M.B.; Natan, B.; Mishra, D. Gel Propellants. Prog. Energy Combust. Sci. 2021, 83: paper 100885; https://doi.org/10.1016/j.pecs.2020.100885.
  • [21] Negri, M.; Ciezki, H.K. Combustion of Gelled Propellants Containing Microsized and Nanosized Aluminum Particles. J. Propul. Power 2015, 31(1): 400-407; https://doi.org/10.2514/1.B35456.
  • [22] Zygmunt, A.; Cieslak, K.; Golofit, T. Magnesium ‒ An Important Component of High-energy Compositions. J. Elem. 2014, 19(2): 617-626; https://doi.org/10.5601/jelem.2013.18.4.450.
  • [23] Elbasuney, S. Steric Stabilization of Colloidal Aluminium Particles for Advanced Metalized-Liquid Rocket Propulsion Systems. Combust. Explos. Shock Waves 2019, 55(3): 353-360; https://doi.org/10.1134/S0010508219030134.
  • [24] Lazaro, A.; Quercia, G.; Brouwers, H.J.H.; Geus, J.W. Synthesis of a Green nano-Silica Material Using Beneficiated Waste Dunites and Its Application In Concrete. World J. Nano Sci. Eng. 2013, 3(3): 41-51; https://doi.org/10.4236/wjnse.2013.33006.
  • [25] Kang, T.J.; Hong, K.H.; Yoo, M.R. Preparation and Properties of Fumed Silica/ Kevlar Composite Fabrics for Application of Stab Resistant Material. Fibers Polym. 2010, 11(5): 719-724; https://doi.org/10.1007/s12221-010-0719-z.
  • [26] Raghavan, S.R.; Walls, H.J.; Khan, S.A. Rheology of Silica Dispersions in Organic Liquids: New Evidence for Solvation Forces Dictated by Hydrogen Bonding. Langmuir 2000, 16(21): 7920-7930; https://doi.org/10.1021/la991548q.
  • [27] Padwal, M.B.; Mishra, D. Interactions Among Synthesis, Rheology, and Atomization of a Gelled Propellant. Rheol. Acta 2016, 55(3): 177-186; https://doi.org/10.1007/s00397-015-0903-6.
  • [28] Arnold, R.; Santos, P.H.S.; Kubal, T. Investigation of Gelled JP-8 and RP-1 Fuels. Proc. World Congress on Engineering and Computer Science, San Francisco, 2009; ISBN: 978-988-17012-6-8.
  • [29] Said, S.; Mikhail, S.; Riad, M. Recent Processes for the Production of Alumina nano-Particles. Mater. Sci. Energy Technol. 2020, 3: 344-363.
  • [30] Yang, D.; Xia, Z.; Huang, L.; Ma, L.; Chen, B.; Feng, Y. Synthesis of Metallized Kerosene Gel and Its Characterization for Propulsion Applications. Fuel 2020, 262: paper 116684; https://doi.org/10.1016/j.fuel.2019.116684.
  • [31] Arnold, R.; Santos, P.H.S.; Campanella, O.H.; Anderson, W.E. Rheological and Thermal Behavior of Gelled Hydrocarbon Fuels. J. Propul. Power 2011, 27(1): 151-161; https://doi.org/10.2514/1.48936.
  • [32] Grosse, A.; Conway, J. Combustion of Metals in Oxygen. Ind. Eng. Chem. 1958, 50(4): 663-672.
  • [33] Kasztankiewicz, A.; Gańczyk-Specjalska, K.; Zygmunt, A.; Cieślak, K.; Zakościelny, B.; Gołofit, T. Application and Properties of Aluminum in Rocket Propellants and Pyrotechnics. J. Elem. 2018, 23(1): 321-331; https://doi.org/10.5601/jelem.2017.22.2.143.
  • [34] Natan, B.; Rahimi, S. The Status of Gel Propellants in Year 2000. Int. J. Energ. Mater. Chem. Propul. 2002, 5(1-6): 172-194; https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.200.
  • [35] Sabourin, J.L.; Yetter, R.A.; Asay, B.W.; Lloyd, J.M.; Sanders, V.E.; Risha, G.A.; Son, S.F. Effect of nano‐Aluminum and Fumed Silica Particles on Deflagration and Detonation of Nitromethane. Propellants Explos., Pyrotech. 2009, 34(5): 385-393; https://doi.org/10.1002/prep.200800106.
  • [36] Grishin, Y.M.; Kozlov, N.P.; Skryabin, A.; Vadchenko, S.G.; Sachkova, N.V.; Sytschev, A.E. Thermit-type SiO2-Al Reaction in Arc Discharge. Int. J. Self-Propag. High-Temp. Synth. 2011, 20: 181-184; https://doi.org/10.3103/S1061386211030022.
  • [37] Coker, E.N.; van Swol, F.; Gill, W.; Donaldson, B. Thermal Analysis of Mixtures Containing Al Powder under Oxidizing Atmospheres: Analyzing the Potential Impact of Propellant Fires Near Launch Site. Sandia National Lab. ReportSAND2012-9937C, Albuquerque, NM-US, 2012
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c04ee495-45ed-4aa9-bb4f-302f5a001157
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.