Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 87, nr 2 | 56--65
Tytuł artykułu

An effective crack tip region finite element sub-model for fracture mechanics analysis

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To create an effective in engineering strength calculation three-dimensional submodel of the near crack tip region in solids for hi-fidelity analysis of their stress-strain state by the finite element method. Design/methodology/approach: To create a volume near the crack tip, regular threedimensional 20-node prismatic isoparametric elements and 15-node special elements with edge length of 12.5 μm with shifted nodes in order to simulate the singularity of stress at the crack tip were used. Using these two types of elements, a cylindrical fragment of diameter of 100 μm was built. In its base is a 16-vertex polygon, and its axis is the crack front line. In the radial direction the size of the elements was smoothly enlarged by creating of 5 circular layers of elements, and in the axial direction 8 layers were created. For convenience of the sub-model usage, the cylindrical fragment was completed by regular elements to a cubic form with edge size 400 μm. For the sub-model approbation, the full-scale three-dimensional models of standard specimens with cracks were built. The stress intensity factor K at normal tension was calculated assuming small scale yielding conditions in a plane between 4th and 5th layers of special elements on the basis of analysis of displacement fields near the crack tip. Findings: An effective three-dimensional sub-model of the near crack tip region is proposed. The sub-model was used to obtain the dependence of the stress intensity factor on the relative crack length at normal tension for four types of standard specimens. The obtained dependences show excellent correlation with known analytical solutions. Research limitations/implications: The concept of finite element meshing at threedimensional modelling of the near crack tip region for high-fidelity stress-strain state analysis was generalized. A sub-model of the near crack tip region was created and used to determine the stress intensity factor at normal tension of four types of standard specimens. It is shown that the proposed methodology is effective for precise analysis of the stressstrain state of solids with cracks within the framework of linear fracture mechanics. Practical implications: By applying the generalized approach and the proposed threedimensional sub-model of the near crack tip region, one can determine the stress-strain state of structure elements and machine parts when analysing their workability by the finite element method. Originality/value: An effective finite-element sub-model for the stress-strain state analysis in the vicinity of the crack tip within the framework of the linear fracture mechanics is proposed.
Wydawca

Rocznik
Strony
56--65
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Katolicki Uniwersytet Lubelski Jana Pawła II, Al. Racławickie 14, 20-950 Lublin, Poland
  • Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan St., Lviv, 79012, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan St., Lviv, 79012, Ukraine
  • Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan St., Lviv, 79012, Ukraine
Bibliografia
  • [1] A. Carpinteri, Handbook of Fatigue Crack Propagation in Metallic Structures, Elsevier Science, Amsterdam, 1994.
  • [2] V.V Panasyuk, M.P. Savruk, A.P. Datsyshyn, Stress distribution in the vicinity of cracks in plates and shells, Naukova Dumka, Kiev, 1976 (in Russian).
  • [3] O.P. Ostash, V.H. Anofriev, I.M. Andreiko, L.A. Muradyan, V.V. Kulyk, On the concept of selection of steels for high-strength railroad wheels, Materials Science 48/6 (2013) 697-703, DOI: 10.1007/sll003-013-9557-7.
  • [4] K. Aslantas, S. Tasgetiren, Edge spalling formation in a plate due to moving compressive load, Turkish Journal of Engineering & Environmental Sciences 27/5 (2003) 333-338.
  • [5] P.L. Ko, S.S. Iyer, H. Vaughan, M. Gadala, Finite element modelling of crack growth and wear particie formation in sliding contact, Wear 251/1-12 (2001) 1265-1278, DOI: 10.1016/S0043-1648(01)00780-3.
  • [6] Y.L. Ivanyts'kyi, O.V. Hembara, O.Y. Chepil', Determination of the durability of elements of powergenerating equipment with regard for the influence of working media, Materials Science 51/1 (2015) 104-113, DOI: 10.1007/sl 1003-015-9820-1.
  • [7] B. Smielak, J. Świniarski, E. Wolowiec-Korecka, L. Klimek, 2D-Finite element analysis of inlay-, olany bridges with using various materials, Archives of Materials Science and Engineering 79/2 (2016) 71-78, DOI: 10.5604/18972764.1229427.
  • [8] P.V. Yasnii, Y . I . Pyndus, V.B. Glad'o, LB. Okipnyi, I V . Shul'gan, FEM prediction of the influence of warm prestressing on fracture toughness of heatresistant steel, Strength of Materials 43/2 (2011) 113-121, DOI: 10.1007/sl 1223-011-9277-x.
  • [9] M. Treifi, S.O. Oyadiji, D.K.L. Tsang, Computations of modes I and II stress intensity factors of Sharp notched plates under in-plane shear and Bendig loading by the fractal-like finite element method, International Journal of Solids and Structures 45/25-26 (2008) 6468-6484.
  • [10] V. Murti, S. Valliapan, The use of quarter point element in dynamic crack analysis, Engineering Fracture Mechanics 23 (1986) 585-614.
  • [11] J.J. Guydish, J.F. Fleming, Optimization of the finie element mesh for the solution of fracture problems, Engineering Fracture Mechanics 10 (1978) 31-42.
  • [12] P.D. Hilton, G.C. Sih (ed.), Application of finie element method to the calculations of stress intensity factors, Methods of analysis and solution of crack problems, Leyden, Nordhoff, 1973, 426-489.
  • [13] R.S. Barsoum, On the use of isoparametric finie elements in linear fracture mechanics, International Journal for Numerical Methods in Engineering 10/1 (1976) 25-37.
  • [14] B. Gervais, A. Vadean, M. Raison, M. Brochu, Failure analysis of a 316L stainless steel femoral orthopedic implant, Case Studies in Engineering Failure Analysis 5-6 (2016) 30-38, DOI: 10.1016/j.csefa.2015.12.001.
  • [15] K. Bari, A. Rolfe, A. Christofi, C. Mazzuca, K.V. Sudhakar, Forensic investigation of a failed connecting rod from a motorcycle engine, Case Studies in Engineering Failure Analysis 9 (2017) 9-16, DOI: 10.1016/j.csefa.2017.05.002.
  • [16] U. Zerbst, Fracture mechanics in railway applications - an overview, Engineering Fracture Mechanics 72/2 (2005) 163-194, DOI: 10.1016/j.engfracmech.2003. 11.010.
  • [17] Wu Wang-ping, Fracture failure analysis of 4Crl3 stainless steel linkages in circuit breakers, Case Studies in Engineering Failure Analysis 5-6 (2016) 23-29, DOI: 10.1016/j.csefa.2016.01.002.
  • [18] State Standard GOST 25.506-85 (1985) Method of mechanical testing of metals. Determination of fracture toughness characteristics under the static loading, Izd. Standartov, Moscow, 62 p (in Russian).
  • [19] Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk, Z.A. Duriagina, Influence of 65G steel micro structure on crack faces friction factor under mode II fatigue fracture, Archives of Materials Science and Engineering 82/2 (2016) 49-56; DOI: 10.5604/01.3001.0009.7103.
  • [20] P.O. Maruschak, U.V. Salo, R.T. Bishchak, LY. Poberezhnyi, Study of Main Gas Pipeline Steel Strain Hardening After Prolonged Operation, Chemical and Petroleum Engineering 50/1-2 (2014) 58-61.
  • [21] D. Moiseenko, P. Maruschak, S. Panin, P. Maksimov, I. Vlasov, F. Berto, S. Schmauder, A. Vinogradov, Effect of Structural Heterogeneity of 17MnlSi Steel on the Temperature Dependence of Impact Deformation and Fracture, Metals 7/7 (2017) 280, 1-18, DOI: 10.3390/met7070280.
  • [22] G. Golański, C. Kolan, A. Zieliński, K. Klimaszewska, A. Merda, M. Sroka, J. Klosowicz, Microstructure and mechanical properties of HR3C austenitic steel after service, Archives of Materials Science and Engineering 81/2 (2016) 62-67, DOI: 10.5604/01. 3001.0009.7100.
  • [23] Y.L. Ivanyts'kyi, Y.V. Mol'kov, P.S. Kun, T.M. Lenkovs'kyi, M. Wojtowicz, Determination of the Local Strains Near Stress Concentrators by the Digital Image Correlation Technique, Materials Science 50/4 (2015) 488-495, DOI: 10.1007/sl 1003-015-9746-7.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-c01eab99-40d7-4342-b00e-2ddacc218b15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.