Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 2 | 334--347
Tytuł artykułu

Seismic strengthening of rigid steel frame with CFRP

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steel frames are a very popular choice in building construction and are used extensively in high seismic risk regions across the world. These existing and future constructed steel frames may need to undergo seismic strengthening to mitigate the high collapse risk during possible earthquakes in the future. In this study a finite element (FE) model was developed, analysed and the results compared with the present self-performed experimental study using shake table tests of steel frames strengthened with externally bonded carbon fibre reinforced polymers (CFRP) composites to validate the modelling techniques. The validated modelling technique are then used for a comprehensive parametric study on the effects of frequency of excitation, maximum acceleration, modulus of CFRP, thickness of CFRP, number of CFRP layers and adhesive type on the seismic response of the frame structure. The results indicate that externally bonded CFRP strengthening is very effective for seismic strengthening of steel frames. The CFRP strengthening technique reduced the lateral deflection by improving the stiffness and energy absorption capacity of the steel frames.
Wydawca

Rocznik
Strony
334--347
Opis fizyczny
Bibliogr. 49 poz., fot., rys., tab., wykr.
Twórcy
  • School of Civil Engineering and Built Environment, Faculty of Science and Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia, tafsirojjaman@hdr.qut.edu.au
autor
  • School of Civil Engineering and Built Environment, Faculty of Science and Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia, sabrina.fawzia@qut.edu.au
  • School of Civil Engineering and Built Environment, Faculty of Science and Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia, d.thambiratnam@qut.edu. au
autor
  • Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia, zxl@monash.edu
Bibliografia
  • [1] D.E. Alexander, Natural Disasters, Springer Science & Business Media, 1993.
  • [2] D. Guha-Sapir, R. Below, P. Hoyois, EM-DAT: International Disaster Database, Catholic University, Louvain Brussels, Belgium, 2015.
  • [3] J. Jim, J. Park, Design of steel moment frames considering progressive collapse, Steel Compos. Struct. 8 (2008) 85–98.
  • [4] H.L. Hsu, Z.C. Li, Seismic performance of steel frames with controlled buckling mechanisms in knee braces, J. Constr. Steel Res. 107 (2015) 50–60.
  • [5] D. Dubina, A. Stratan, Behaviour of welded connections of moment resisting frames beam-to-column joints, Eng. Struct. 24 (2002) 1431–1440.
  • [6] P.D. Moncarz, B.M. McDonald, R.D. Caligiuri, Earthquake failures of welded building connections, Int. J. Solids Struct. 38 (2001) 2025–2032.
  • [7] B. Silwal, R.J. Michael, O.E. Ozbulut, A superelastic viscous damper for enhanced seismic performance of steel moment frames, Eng. Struct. 105 (2015) 152–164.
  • [8] S.A. Mahin, Lessons from damage to steel buildings during the Northridge earthquake, Eng. Struct. 20 (1998) 261–270.
  • [9] K.C. Tsai, S. Wu, Behavior and Design of Seismic Moment Resisting Beam-Column Joints, Center for Earthquake Engineering Research, National Taiwan University, 1993.
  • [10] K.C. Lin, K.C. Tsai, H.Y. Chang, Failure modes and flexural ductility of steel moment connections, Main (2008).
  • [11] Y. Kim, S. Oh, T. Moon, Seismic behavior and retrofit of steel moment connections considering slab effects, Eng. Struct. 26 (2005) 1993–2005.
  • [12] T. Kim, A.S. Whittaker, M. Asce, A.S.J. Gilani, M. Asce, V.V. Bertero, M. Asce, S.M. Takhirov, A.M. Asce, Cover-plate and flange-plate steel moment-resisting connections, J. Struct. Eng. 128 (2002) 474–482.
  • [13] W. Fricke, Fatigue analysis of welded joints: state of development, Mar. Struct. 16 (2003) 185–200.
  • [14] A.I. of, S. Construction, Seismic provisions for structural steel buildings, Am. Inst. Steel Constr. (2002).
  • [15] J.G. Teng, T. Yu, D. Fernando, Strengthening of steel structures with fiber-reinforced polymer composites, J. Constr. Steel Res. 78 (2012) 131–143.
  • [16] L.C. Hollaway, J.-G. Teng, Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites, Elsevier, 2008.
  • [17] K.A. Harries, A.J. Peck, E.J. Abraham, Enhancing stability of structural steel sections using FRP, Thin-Walled Struct. 47 (2009) 1092–1101.
  • [18] N.D. Fernando, Bond Behaviour and Debonding Failures In CFRP-Strengthened Steel Members, The Hong Kong Polytechnic University, 2010.
  • [19] M.I. Alam, S. Fawzia, Numerical studies on CFRP strengthened steel columns under transverse impact, Compos. Struct. 120 (2015) 428–441.
  • [20] P. Colombi, C. Poggi, An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips, Compos. Part B Eng. 37 (2006) 64–73.
  • [21] D. Schnerch, S. Rizkalla, Flexural strengthening of steel bridges with high modulus CFRP strips, J. Bridge Eng. 13 (2008) 192–201.
  • [22] H. Nakamura, W. Jiang, H. Suzuki, K. ichi Maeda, T. Irube, Experimental study on repair of fatigue cracks at welded Web gusset joint using CFRP strips, Thin-Walled Struct. 47 (2009) 1059–1068.
  • [23] T. CHEN, Q.-Q. Yu, X.-L. Gu, X.-L. Zhao, Study on fatigue behavior of strengthened non-load-carrying cruciform welded joints using carbon fiber sheets, Int. J. Struct. Stab. Dyn. 12 (2012) 179–194.
  • [24] Z.-G. Xiao, X.-L. Zhao, CFRP repaired welded thin-walled cross-beam connections subject to in-plane fatigue loading, Int. J. Struct. Stab. Dyn. 12 (2012) 195–211.
  • [25] F.G.A. Al-Bermani, B. Li, K. Zhu, S. Kitipornchai, Cyclic and seismic response of flexibly jointed frames, Eng. Struct. 16 (1994) 249–255.
  • [26] Australian/New Zealand StandardTM, Australian/New Zealand StandardTM Structural steel Part 1 : Hot-rolled bars and sections, 1996 2010, . p. 42.
  • [27] AS/NZS 3678, Structural steel — Hot-rolled plates, floorplates and slabs, 2011, . p. 40.
  • [28] S. Fawzia, Bond characteristics between steel and karbon fibre reinforced polymer (CFRP) composites, 2008.
  • [29] Australian/New Zealand StandardTM Structural steelwork — Fabrication and erection 2016.
  • [30] M.H. Kabir, S. Fawzia, T.H.T. Chan, Durability of CFRP strengthened circular hollow steel members under cold weather: experimental and numerical investigation, Constr. Build. Mater. 123 (2016) 372–383.
  • [31] M.H. Kabir, S. Fawzia, T.H.T. Chan, J.C.P.H. Gamage, J.B. Bai, Experimental and numerical investigation of the behaviour of CFRP strengthened CHS beams subjected to bending, Eng. Struct. 113 (2016) 160–173.
  • [32] C. Batuwitage, S. Fawzia, D. Thambiratnam, R. Al-Mahaidi, Durability of CFRP strengthened steel plate double-strap joints in accelerated corrosion environments, Compos. Struct. 160 (2017) 1287–1298.
  • [33] I. Alam, S. Fawzia, X. Zhao, F. Asce, A.M. Remennikov, Experimental study on FRP-strengthened steel tubular members under lateral impact, J. Compos. Struct. 21 (2013).
  • [34] M.H. Kabir, S. Fawzia, T.H.T. Chan, J.C.P.H. Gamage, Durability performance of carbon fibre-reinforced polymer strengthened circular hollow steel members under cold weather, Aust. J. Struct. Eng. 15 (2014) 377–392.
  • [35] M.H. Kabir, S. Fawzia, T.H.T. Chan, J.C.P.H. Gamage, Comparative durability study of CFRP strengthened tubular steel members under cold weather, Mater. Struct. 49 (2016) 1761–1774.
  • [36] S. Holzner, U Can: Physics I For Dummies, John Wiley & Sons, 2015.
  • [37] Strand7, Strand7 Finite Element Analysis System, 2007.
  • [38] S. Fawzia, R. Al-Mahaidi, X.L. Zhao, Experimental and finite element analysis of a double strap joint between steel plater and normal modulus CFRP, Compos. Struct. 75 (2006) 156–162.
  • [39] C. Cruz, E. Miranda, Evaluation of the Rayleigh damping model for buildings, Eng. Struct. 138 (2017) 324–336.
  • [40] N. Satake, K. Suda, T. Arakawa, A. Sasaki, Y. Tamura, Damping evaluation using full-scale data of buildings In Japan, J. Struct. Eng. 129 (2003) 470–477.
  • [41] J. Marko, D. Thambiratnam, N. Perera, Influence of damping systems on building structures subject to seismic effects, Eng. Struct. 26 (2004) 1939–1956.
  • [42] U. Vogel, Calibrating frames, Stahlbau 10 (1985) 1–7.
  • [43] E. Mele, L. Calado, A. De Luca, Experimental investigation on European welded connections, J. Struct. Eng. 129 (2003) 1301–1311.
  • [44] D.Y. Wang, Z.Y. Wang, T. Yu, H. Li, Shake table tests of largescale substandard RC frames retrofitted with CFRP wraps before earthquakes, J. Compos. Constr. 21 (2017).
  • [45] F.L.A. Ribeiro, A.R. Barbosa, M.H. Scott, L.C. Neves, Deterioration modeling of steel moment resisting frazes using finite-length plastic hinge force-based beam-column elements, J. Struct. Eng. 141 (2015) 4014112.
  • [46] S. Fawzia, R. Al-Mahaidi, X.L. Zhao, S. Rizkalla, Strengthening of circular hollow steel tubular sections using high moduluj CFRP sheets, Constr. Build. Mater. 21 (2007) 839–845.
  • [47] D. Schnerch, K. Stanford, B. Lanier, S. Rizkalla, Use of high modulus Carbon Fiber Reinforced Polymers (CFRP) for strengthening steel structures, Proc. Second Int. Work. Struct. Compos. Infrastruct. Appl. (2003) 1733, CD-ROM.
  • [48] T. Yu, D. Fernando, J.G. Teng, X.L. Zhao, Experimental study on CFRP-to-steel bonded interfaces, Compos. Part B Eng. 43 (2012) 2279–2289.
  • [49] C. Arnold, Earthquake Effects on Buildings 4, Des. Earthquakes A Man. Archit. Fema 454/December 2006, Risk Manag. Ser. (2006).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bf9ca19b-ba35-4b99-9315-136f38c439b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.