Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The Gentzen system for n-valued logical calculi discussed here is based on the notion of a sequent. However, this notion can be defined in at least three different ways. The first defines a sequent as a finite sequence of formulas (Kirin 1985, Saloni 1972, Orłowska 1985), the second defines it as an ordered n-tuple of finite sequences or sets of formulas (Rousseau 1967, Takahasi 1967, Borowik 1984). The third way consists in defining a sequent as an ordered pair of finite sets or sequences of formulas (Fitting 1991). The assumed definition determines then the form of the rules for eliminating or introducing propositional connectives in a given sequent, and thus also the whole formalization of the system.
Rocznik
Tom
Strony
89-120
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
Bibliografia
- 1. Beth, E.W. (1955) Semantic Entailment and Formal-Derivability, Mededel Kon. Ned. Akad. Wetensch. Afd. Letterkunde N.S. 18, 309-342.
- 2. Beth, E.W. (1959) The foundations of mathematics, North-Holland Pu. Co., Amsterdam.
- 3. Bočvar, D.A. (1938) Ob odnom triechznacznom isczislenii (in Russian), Mat. Sb., t. 4 (46), Nr 2.
- 4. Bočvar, D.A. (1943) K voprosu o nieprotivoriecznosti odnogo triechznacznogo isczislenia (in Russian), Mat. Sb., t. 12 (54), Nr 3.
- 5. Bočvar, D.A., Finn, W.K. (1976) Niekotoryje dopelnienia k statiom o mnogoznacznych logikach (in Russian), Issledovania po tieorii mnozestv i nieklassiczieskim logikam, Nauka, 265-325.
- 6. Borowik, P. (1992) In collaboration with Leonard Bolc: Many-Valued Logics 1, Theoretical Fundations. Springer-Verlag, Heidelberg-New York.
- 7. Borowik, P. (1993) Many-Sequent First-Order Predicate logic. Abstract, Bulletin of the Section of Logic, vol. 22 (1), Łódź 4-8.
- 8. Borowik, P. (1994) The semantic tableaux method in finitely many-valued logics (abstract, in Polish),
- 9. Borowik, P., Bryll, G. (1994) Refutation of expressions in n-valued propositional logics (abstract, in Polish),
- 10. Borowik, P. (1994) Refutation in n-valued predicate calculus (abstract, in Polish) ,40th Conference on the History of Logics, Cracow 1994.
- 11. Borowik, P. (1995) An exemplary algorithm of a prover for automatic theorem prowing(abstract, in Polish) 24th Polish Conference on the Applications of Mathematics,Zakopane'95, 13-14.
- 12. Borowik, P., Bryll G. (1994) On finite non-axiomatizability of some finite mainces(abstract, in Polish)
- 13. Borowik, P., Bryll G. (1995) On finite (non)axiomatizability of some finite matrices (in Polish)J. Perzanowski, A. Pietruszczak, C. Gorzka eds., published by the Mikołaj Kopernik University, Toruń, 281-287.
- 14. Borowik, P., Bryll G. (1995) On a certain syntactic consequence function (in Polish),Czech-Polish Mathematical School, Usti n. Labem 1995.
- 15. Carnielli, W.A. (1987a) The problem of quantificational completeness and the characterization of all perfect quantifiers in 3-valued logic. Z. Math. Logik Grundlag. Math., 33, 19-29.
- 16. Carnielli, W. A. (1987) Systematization of finite many-valued logics through the method of tableaux. Journal of Symbolic Logic, vol. 52, no. 2, 473-493.
- 17. Carnielli, W.A. (1991) On sequents and tableaux for many-valued logics. Journal of Non-Classical Logic, vol. 8, no. l, 59-76.
- 18. Dwinger, P. (1975) A survery of the theory of Post algebras and their generalizations. In: Dunn J.M., Epstein G. (eds) Modern uses of multiple-valued logic. Reidel, Dodrecht, 53-75.
- 19. Epstein, G., Horn A. (1974a) P-algebras, an abstraction from Post algebras. Algebra Universalis 4, 195-206.
- 20. Gentzen, G. (1934-5) Untersuchungen ueber das logische Schliessen, Math. Z.39, 176-210 and 405-431.
- 21. Hintikka, J. (1955) Form and Content in Quantification Theory, Acta Phil. Fen. 8, 7-55.
- 22. Łukasiewicz, J. Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalkuls. Reports from the Meetings of the Warsaw Scientific Society, Dept. III, XXIII, Warsaw 1930.
- 23. Łukasiewicz, J., Tarski A., Untersuchungen über den Aussagenkalkiil. Ibid.
- 24. Post, F.L. (1921) Introduction to a General Theory of Elementary Propositions. American Journal of Mathematics, v. XLIII, Nr 3.
- 25. Rine, C. (ed) (1977) Computer science and multiple-valued logic. North Holland, Amsterdam.
- 26. Rosser, J.B., Turquette A.R. (1952) Many-valued logics. North Holland, Amsterdam.
- 27. Skura, T. (1993) Some result concerning refutation procedures. Acta Universitatis Vratislaviensis, no. 1445, Logika 15, 83-95.
- 28. Słupecki, J. (1939) A proof of the axiomatizability of complete multi-valued propositional calculus systems (in Polish), Letters de Varsovie, Cl. III, XXXII, Fasc. 1-3, 110-128.
- 29. Słupecki, J. (1958) On certain fragmentary propositional calculus sytems Studia Logica 8, 177-187.
- 30. Smullyan, R.M. (1968) First-Order Logic, Springer-Verlag, Berlin-Heidelberg New-York.
- 31. Sobociński, B. (1936) Axiomatization of some many-valued deduction theory systems. Annals of the Scientific Papers of the Researchers of Józef Piłsduski University in Warsaw, I.
- 32. Suchoń, W. (1977) Smullyan's method of constructing Łukasiewicz's m-valued implicational-negational sentential calculus. in: Wójcicki R., Malinowski, G. (1977) Selected papers on Łukasiewicz sentential calculi. Ossolineum, Wrocław - Warszawa, 119-124.
- 33. Surma, S.,J. (1974) An algorithm of axiomatizing every finite logics. Report, Mathematical Logics 3, 57-62.
- 34. Traczyk, T. (1963) Axioms and some properties of Post algebras. Colloquium Mathematicum 10, 193-209.
- 35. Wolf, R.G. (1975) A critical survey of many-valued logics 1966-1974- Proceedings of the 1975 International Symposium on Multiple-Valued Logic, 468-474.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bf8273ed-1095-43c0-9096-3767e29cce36