Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 17, no. 3 | 623--638
Tytuł artykułu

Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the current study is to address the nonlinear buckling and postbuckling response of nanoscaled cylindrical shells made of functionally graded material (FGM) under hydrostatic pressure aiming to investigate the sensitivity to the initial geometric imperfection in the presence of surface effects and thermal environments. According to a power law distribution, the material properties of the FGM nanoshell are considered change through the shell thickness. Also, the change in the position of physical neutral plane corresponding to different volume fractions is taken into account to eliminate the stretching-bending coupling terms. In order to acquire the size effect qualitatively, the well-known Gurtin-Murdoch elasticity theory is incorporated within the framework of the classical shell theory. Using the variational approach, the non-classical governing equations are displayed and deduced to boundary layer type ones. Afterwards, explicit expressions for the size-dependent radial postbuckling equilibrium paths of imperfect FGM nanoshells are proposed with the aid of a perturbation-based solution methodology. It is displayed that by moving from the ceramic phase to the metal one, the critical buckling pressure decreases, but the postbuckling stiffness increases, because in contrast to the ceramic phase, the surface modulus and residual surface stress associated with the metal phase have the same sign.
Wydawca

Rocznik
Strony
623--638
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran, sahmani@aut.ac.ir
  • Department of Mechanical Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
Bibliografia
  • [1] Z. Lee, C. Ophus, L.M. Fischer, N. Nelson-Fitzpatrick, K.L. Westra, S. Evoy, et al., Metallic NEMS components fabricated from nanocomposite Al–Mo films, Nanotechnology 17 (2006) 3063–3069.
  • [2] C.F. Lü, C.W. Lim, W.Q. Chen, Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory, International Journal of Solids and Structures 46 (2009) 1176– 1185.
  • [3] M. Estili, K. Takagi, A. Kawasaki, Advanced nanostructure-controlled functionally graded materials employing carbon nanotubes, Materials Science Forum 631–632 (2010) 225–230.
  • [4] I. Bharti, N. Gupta, K.M. Gupta, Novel applications of functionally graded nano, optoelectronic and thermoelectric materials, International Journal of Materials 1 (2013) 221–224.
  • [5] Y.S. Li, W.J. Feng, Z.Y. Cai, Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory, Composite Structures 115 (2014) 41–50.
  • [6] R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A 375 (2010) 53–62.
  • [7] R. Ansari, S. Sahmani, Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models, Communications in Nonlinear Science and Numerical Simulation 17 (2012) 1965–1979.
  • [8] H.-T. Thai, T.P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, International Journal of Engineering Science 54 (2012) 58–66.
  • [9] R. Ansari, S. Sahmani, Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations, Applied Mathematical Modelling 37 (2013) 7338–7351.
  • [10] Y.-Z. Wang, F.-M. Li, Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory, International Journal of Non-Linear Mechanics 61 (2014) 74– 79.
  • [11] S. Sahmani, M. Bahrami, R. Ansari, Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory, Composite Structures 110 (2014) 219–230.
  • [12] S. El-Borgi, R. Fernandes, J.N. Reddy, Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation, International Journal of Non-Linear Mechanics 77 (2015) 348–363.
  • [13] M. Simsek, Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach, International Journal of Engineering Science 105 (2016) 12–27.
  • [14] Y. Tang, Y. Liu, D. Zhao, Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory, Physica E 84 (2016) 202–208.
  • [15] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surface, Archive for Rational Mechanics and Analysis 57 (1975) 291–323.
  • [16] M.E. Gurtin, A.I. Murdoch, Surface stress in solids, International Journal of Solids and Structures 14 (1978) 431– 440.
  • [17] G.Y. Jing, H.L. Duan, X.M. Sun, Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy, Physical Review B 73 (2006) 235409–235414.
  • [18] M. Jammes, S.G. Mogilevskaya, S.L. Crouch, Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes, Engineering Analysis with Boundary Elements 33 (2009) 233–248.
  • [19] S.G. Mogilevskaya, S.L. Crouch, A.L. Grotta, H.K. Stolarski, The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites, Composites Science and Technology 70 (2010) 427–434.
  • [20] Z.-Q. Wang, Y.-P. Zhao, Z.-P. Huang, The effects of surface tension on the elastic properties of nano structures, International Journal of Engineering Science 48 (2010) 140– 150.
  • [21] P. Intarit, T. Senjuntichai, R.K.N.D. Rajapakse, Dislocations and internal loading in a semi-infinite elastic medium with surface stresses, Engineering Fracture Mechanics 77 (2010) 3592–3603.
  • [22] R. Ansari, S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, International Journal of Engineering Science 49 (2011) 1244–1255.
  • [23] R. Ansari, S. Sahmani, Surface stress effects on the free vibration behavior of nanoplates, International Journal of Engineering Science 49 (2011) 1204–1215.
  • [24] R. Nazemnezhad, M. Salimi, Sh. Hosseini Hashemi, P. Asgharifard Sharabiani, An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects, Composites Part B: Engineering 43 (2012) 2893–2897.
  • [25] M. Shaat, F.F. Mahmoud, A.E. Alshorbagy, S.S. Alieldin, Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects, International Journal of Mechanical Sciences 75 (2013) 223–232.
  • [26] P. Malekzadeh, M. Shojaee, Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams, Composites Part B: Engineering 52 (2013) 84–92.
  • [27] S. Sahmani, M. Bahrami, R. Ansari, Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams, Composite Structures 116 (2014) 552–561.
  • [28] S. Sahmani, M. Bahrami, M.M. Aghdam, R. Ansari, Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams, Composite Structures 118 (2014) 149–158.
  • [29] K.F. Wang, B.L. Wang, A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature, Physica E 66 (2015) 197–208.
  • [30] A. Mohebshahedin, A. Farrokhabadi, The influence of the surface energy on the instability behavior of NEMS structures in presence of intermolecular attractions, International Journal of Mechanical Sciences 101–102 (2015) 437–448.
  • [31] S. Sahmani, M.M. Aghdam, M. Bahrami, On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects, Composite Structures 121 (2015) 377–385.
  • [32] J. Rungamornrat, P. Tuttipongsawat, T. Senjuntichai, Elastic layer under axisymmetric surface loads and influence of surface stresses, Applied Mathematical Modelling 40 (2016) 1532–1553.
  • [33] H. Fan, L. Xu, Decay rates in nano tubes with consideration of surface elasticity, Mechanics Research Communications 73 (2016) 113–116.
  • [34] M.E. Fares, M.K. Elmarghany, D. Atta, An efficient and simple refined theory for bending and vibration of functionally graded plates, Composite Structures 91 (2009) 296–305.
  • [35] L.H. Donnell, Beam, Plates and Shells, McGraw-Hill, New York, USA, 1976, pp. 377–445.
  • [36] H.-S. Shen, Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium, International Journal of Mechanical Sciences 51 (2009) 372–383.
  • [37] H.-S. Shen, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: pressure-loaded shells, Composite Structures 93 (2011) 2496–2503.
  • [38] H.-S. Shen, Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells, Part I: Theory and solutions, Composite Structures 94 (2012) 1305– 1321.
  • [39] H.-S. Shen, Y. Xiang, Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment, Composites Part B: Engineering 52 (2013) 311–322.
  • [40] S. Sahmani, M.M. Aghdam, A.H. Akbarzadeh, Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load, Materials & Design 105 (2016) 341–351.
  • [41] R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11 (2000) 139–147.
  • [42] P. Mirfakhraei, D. Redekop, Buckling of circular cylindrical shells by the differential quadrature method, International Journal of Pressure Vessels and Piping 75 (1998) 347–353.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bf3b57c6-851c-4ee9-b957-b31357b7a61a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.