Czasopismo
2015
|
Vol. 63, nr 2
|
273--279
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The biodiversity is a core value in all ecosystems. The nitrogen (N) addition in the form of N fertilizers has effect to a wide variety of fauna living in soils. N losses from arable land should tend not only to cause water eutrophication, but also lower soil nutrient stocks and decreasing soil fertility. This study determined the effect of N soil content in conventional tillage agro-ecosystem on the soil fauna diversity in grass stripes under the sloped arable land. My objective here is to observe soil faunal taxa living in grass filter strips. The goal of this work is to describe the relationship of soil fauna to the nitrate (NO3-) content runoff from fields and captured in grass filter strips. The field work was carried out during period from May until June 2013, for soil fauna investigation the extraction in Berlese — Tullgren funnels were used. Nitratenitrogen (NO3-N) was extracted from air-dried sieved soil using a 2 M KCl solution. Altogether 2,020 specimens representing 19 arthropod groups were found in twenty study sites. Most abundant taxa found practically in each of sampling site were Collembola, Acari and the suborder of Oribatid mites. Statistical evaluations revealed that the effect of NO3- concentration in the soil on the average value of the total edaphic individual numbers was statistically significant; the same applies for the abundance of Acari mites. No significant results were find for the Oribatid mites and the Collembola family; however, there was a clear trend of increasing abundance with increasing concentrations of NO3-.
Czasopismo
Rocznik
Tom
Strony
273--279
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republi, hlava@af.czu.cz
Bibliografia
- 1. Araujo C.C., Nomelini Q.S.S., Pereira J.M., Liporacci H.S.N., Kataguiri V.S. 2010 — Comparison of the abundance of soil invertebrates through interval estimation in different areas in Ituiutaba city — Biosci. J. 26:817–823.
- 2. Baretta D., Mafra A.L., Santos J.C.P., do Amarante C.V.T., Bertol I. 2006 — Multivariate analysis of soil fauna under different soil tillage and crop management systems — Pesqui Agropecu. Bras. 41: 1675–1679.
- 3. Barfield B.J., Tollner E.W., Hayes J.C. 1979 — Filtration of sediment by simulated vegetation, I. Steady-state flow with homogeneous sediment — T. Asae. 22: 540–548.
- 4. Cerro I., Antiguedad I., Srinavasan R., Sauvage S., Volk M., Sanchez-Perez J.M. 2014 — Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer —J. Environ. Qual. 43: 67–74.
- 5. Coulson S.J., Fjellberg A., Gwiazdowicz D.J., Lebedeva N.V., Melekhina E.N., Solhoy T., Erseus C., Maraldo K., Miko L., Schatz H., Schmelz R.M., Soli G., Stur E. 2013 — The invertebrate fauna of anthropogenic soils in the High-Arctic settlement of Barentsburg, Svalbard — Polar Res. 32: 192173.
- 6. Dass A., Sudhishri S., Lenka N.K., Patnaik U.S. 2011 — Runoff capture through vegetative barriers and planting methodologies to reduce erosion, and improve soil moisture, fertility and crop productivity in southern Orissa, India — Nutr. Cycl. Agroecosys. 89: 45–57.
- 7. Du F., Xu X.X., Zhang X.C., Shao M.G., Hu L.J., Shan L. 2012 — Responses of old-field vegetation to spatially homogenous or heterogenous fertilisation: implications for resources utilization and restoration — Pol. J. Ecol.60: 133–144.
- 8. Duiker S.W., Lal R. 1999 — Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio— Soil Till. Res. 52: 73–81.
- 9. Farhadinejad T., Khakzad A., Jafari M., Shoaee Z., Khosrotehrani K., Nobari R., Shahrokhi V. 2014 — The study of environmental effects of chemical fertilizers and domestic sewage on water quality of Taft region, Central Iran — Arab. J. Geosci. 7: 221–229.
- 10. Filser J., Fromm H., Nagel R.F., Winter K. 1995 — Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna — Plant Soil, 170: 123–129.
- 11. Francis G.S., Fraser P.M. 1998 — The effects of three earthworm species on soil macroporosity and hydraulic conductivity — Appl. Soil Ecol. 10: 11–19.
- 12. Grandy A.S., Loecke T.D., Parr S., Robertson G.P. 2006 — Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems — J. Environ. Qual. 35: 1487–1495.
- 13. Hlava J., Krupauerova A., Bartak M. 2013 — Arthropod diversity in agrosystems under different management —Scientia Agriculturae Bohemica, 44: 85–89.
- 14. Karg J. 2004 — Importance of midfield shelterbelts for over-wintering entomofauna (Turew area, West Poland)— Pol. J. Ecol. 52: 421–431.
- 15. Kulkarni S.R., Chunale G.L., Jadhav B.S. 2009 — Performance study of local grasses for soil and water conservation in watershed — Res. Crop. 10: 437–440.
- 16. Lang A.C., von Oheimb G., Scherer-Lorenzen M., Yang B., Trogisch S., Bruelheide H., Ma K.P., Hardtle W. 2014— Mixed afforestation of young subtropical trees promotes nitrogen acquisition and retention — J. Appl. Ecol.51: 224–233.
- 17. Lavelle P., Bignell D., Lepage M., Wolters V., Roger P., Ineson P., Heal O.W., Dhillion S. 1997 — Soil function in a changing world: the role of invertebrate ecosystem engineers — Eur. J. Soil Biol. 33: 159–193.
- 18. Lecki R. 2004 — Small mammals in two midfields shelterbelts of different age — Pol. J. Ecol. 52: 455–459.
- 19. Matlou M.C., Haynes R.J. 2006 — Soluble organic matter and microbial biomass C and N in soils under pasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study — Appl. Soil Ecol. 34:160–167.
- 20. Menalled F.D., Smith R.G., Dauer J.T., Fox T.B. 2007 — Impact of agricultural management on carabid communities and weed seed predation — Agr. Ecosyst. Environ. 118: 49–54.
- 21. Muñoz-Carpena R., Parsons J.E., Gilliam J.W. 1999 — Modeling hydrology and sediment transport in vegetative filter strips — J. Hydrol. 214: 111–129.
- 22. Neto F.V.D., Correia M.E.F., Pereira G.H.A., Pereira M.G., Leles P.S.D. 2012 — Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest — Rev. Bras. Cienc. Solo. 36: 1407–1417.
- 23. Nielsen U.N., Osler G.H.R., van der Wal R., Campbell C.D., Burslem D.F.R.P. 2008 — Soil pore volume and the abundance of soil mites in two contrasting habitats — Soil Biol. Biochem. 40: 1538–1541.
- 24. Nuria R., Jerome M., Leonide C., Christine R., Gerard H., Etienne I., Patrick L. 2011 — IBQS: A synthetic index of soil quality based on soil macro-invertebrate communities — Soil Biol. Biochem. 43: 2032–2045.
- 25. Pan C., Ma L., Shangguan Z., Ding A. 2011 — Determining the sediment trapping capacity of grass filter strips— J. Hydrology, 405: 209–216.
- 26. Pandey C.B., Chaudhari S.K. 2010 — Soil and nutrient losses from different land uses and vegetative methods for their control on hilly terrain of South Andaman — Indian J. Agr. Sci. 80: 399–404.
- 27. Parisi V., Menta C., Gardi C., Jacomini C., Mozzanica E. 2005 — Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy — Agr. Ecosyst. Environ. 105: 323–333.
- 28. Petersen H., Jucevica E., Gjelstrup P. 2004 — Longterm changes in collembolan communities in grazed and non-grazed abandoned arable fields in Denmark — Pedobiologia, 48: 559–573.
- 29. Rousseau L., Fonte S.J., Tellez O., van der Hoek R., Lavelle P. 2013 — Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua — Ecol. Indic. 27:71–82.
- 30. Schier A. 2006 — Field study on the occurrence of ground beetles and spiders in genetically modified, herbicide tolerant corn in conventional and conservation tillage systems — J. Plant Dis. Protect. 113: 101–113.
- 31. Skubala P., Gulvik M. 2005 — Pioneer oribatid mite communities (Acari, Oribatida) in newly exposed natural (glacier foreland) and anthropogenic (post-industrial dump) habitats — Pol. J. Ecol. 53: 395–407.
- 32. Toyota A., Hynst J., Cajthaml T., Frouz J. 2013 — Soil fauna increase nitrogen loss in tilled soil with legume but reduce nitrogen loss in nontilled soil without legume — Soil Biol. Biochem. 60: 105–112.
- 33. Umiker K.J., Johnson-Maynard J.L., Hatten T.D., Eigenbrode S.D., Bosque-Perez N.A. 2009 — Soil carbon, nitrogen, pH, and earthworm density as influenced by cropping practices in the Inland Pacific Northwest — Soil Till. Res. 105: 184–191.
- 34. van Vliet P.C.J., van der Stelt B., Rietberg P.I., de Goede R.G.M. 2007 — Effects of organic matter content on earthworms and nitrogen mineralization in grassland soils — Eur. J. Soil Biol. 43: S222–S229.
- 35. Velthof G.L., Oudendag D., Witzke H.R., Asman W.A.H., Klimont Z., Oenema O. 2009 — Integrated Assessment of Nitrogen Losses from Agriculture in EU-27 using MITERRA-EUROPE — J. Environ. Qual. 38:402–417.
- 36. Vitousek P.M., Howarth R.W. 1991 — Nitrogen Limitation on Land and in the Sea - How Can It Occur —Biogeochemistry, 13: 87–115.
- 37. Wawer R., Nowocien E., Podolski B., Kozyra J., Pudelko R. 2013 — Protective role of grassland against soil water erosion caused by extreme rainfall events as compared to black fallow — J. Food Agric. Environ. 11:1069–1071.
- 38. Wickings K., Grandy A.S. 2013 — Management intensity interacts with litter chemistry and climate to drive temporal patterns in arthropod communities during decomposition — Pedobiologia, 56: 105–112.
- 39. Xu Q.X., Wang T.W., Cai C.F., Li Z.X., Shi Z.H. 2012 — Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China — Land Degrad. Dev. 23: 34–42.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-bf161981-3284-4476-b5df-f40641d9e37c